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1 Basic Algebraic Number Theory

1.1 A Review of Field Extensions

In this subsection we recall central terms and statements concerning field exten-
sions. Many of the statements in this subsection are inspired by [Pinl6b]. The
proofs in this section will be rather brief — for more details we refer to the books
by [Bos93| or [Rotl0)].

Definition 1.1. Let K C L be fields. Then the tuple (L, K) is called a field
extension.

A ring extension is defined analogously. Note that for any field extension
(L, K) the field L can be seen as a vector space over K.

Definition 1.2. Let (L, K) be a field extension. The dimension of L viewed as
a vector space over K is called the degree of the field extension and is denoted
by [L : K]. Further, a field extension (L, K) is called finite if it has finite degree.

Example 1.3. The field extension (R, Q) is not finite, since finiteness of (R : Q)
would imply that R is countable.

A central object of study in Algebraic Number Theory is a so called number
field.

Definition 1.4. A number field is a finite field extension of the rational numbers.

Definition 1.5. Let (L, K) be a field extension. An element a € L is called
algebraic over K if there are coefficients k1, ..., k, € K such that

a" + ka4 ... +k,=0.

The field extension (L, K) is called algebraic if every element of L is algebraic
over K. We further say that a complex number is algebraic if it is algebraic over
Q.

A field extension that is not algebraic is called transcendental.

One easily checks that an element a € L is algebraic over K if and only if
there is a non-zero polynomial f € K[X] such that f(a) = 0. Furthermore, recall
that for an algebraic element element a € L, the minimal polynomial of a is the
unique irreducible normed polynomial f € K[X] with f(a) = 0. We next recall
some basic facts about algebraic field extension.

Proposition 1.6. Let (L, K) be a field extension and a € L an element. Then
the following properties are equivalent:

(i) a is algebraic over K.
(ii) Kla] is a field of finite degree over K.

Proof. Assume that a is algebraic and let f be the minimal polynomial of a.
Then consider the homomorphism

0:K[X] > L,  f~ fla)
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We thus have that K[a] = K[X]/ker(y), with ker(¢) = (f). Since f is irreducible
and K[X] is a principle ideal domain, we conclude that (f) is a maximal ideal
and thus KJa] is a field and hence equal to K(a). A basis for K|a] is given by
1,a,a?,...,a" !, where n is the degree of f.

Conversely assume that KJa] is a field of finite degree over K. Then a basis
over K represents any power of a. Thus choosing a high enough power of a, we
see that a is algebraic. O

Proposition 1.7. Let (L,K) be a field extension and let ay,...,a, € L.
Then ai,...,a, are algebraic over K, if and only if is the field extension
(K(a1,...,aq), K) is finite.

Proof. We use the proceeding proposition together with induction. O
Proposition 1.8. Every finite field extension is algebraic.
Proof. This follows directly form any of the last two propositions. O

Example 1.9. The converse of the above proposition does not hold. For example
consider the set A = {/n : n € N>o} and the field extension (Q(A), Q).

Proposition 1.10. If (M, L) and (L, K) are field extensions. Then (M, K) is
algebraic if and only if (M, L) and (L, K) are algebraic.

Proof. If (M, K) is algebraic, then it follows directly that (M, L) and (L, K) are
algebraic. Conversely if (M, L) and (L, K) are algebraic, then for any element
a € M, there are coefficients by, ...,b, € L such that a” +b;a™ ' +...+b, =0.
Since (L, K) is algebraic, the field extension (K(by,...,b,), K) is finite. By
the above, it follows that K (by,...,by,a) is finite and hence a is algebraic over
K. O

We next study homomorphisms over K.

Definition 1.11. Let (L, K) and (L, K) be field extensions. A field homomor-
phism ¢ : L — L' that is the identity on K is called a field homomorphism over
K. The set of homomorphisms L — L' over K is denoted Homg (L, L").

Proposition 1.12. If [L : K| = [L’ : K| < oo, then every homomorphism
¢:L— L' over K is is an isomorphism.

Proof. Recall that every field homomorphism is injective. Furthermore, we can
view ¢ as a injective vector space homomorphism between two vector spaces of
the same dimension. Thus ¢ is an isomorphism. O

Proposition 1.13. Let (L, K) and (L', K) be field extensions and ¢ : L — L’
be a homomorphism over K. Then a € L is algebraic if and only if ¢(a) is
algebraic. In this case, a and p(a) have the same minimal polynomial.

Proof. If a € L is algebraic, then there are coefficients by, ...,b,, € K such that
a" 4+ bya" ! + ...+ b, = 0. Then by applying ¢ to this expression and using
that ¢ is constant on K, we see that ¢(a) is algebraic. The converse follows
analogously since ¢ is injective. For the last statement let f be the minimal
polynomial of a. Then since f(¢(a)) = p(f(a)) = 0, we conclude that f is also
the minimal polynomial of ¢(a). O
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Proposition 1.14. Let (L,K) and (L', K) be field extensions, ¢ : L — L' a
homomorphism over K and let a € L be an algebraic element with minimal
polynomial f. Then the map

Homg (K (a), L") = {a" € L' : f(a) =0},
s a bijection.

Proof. The map is well defined by the last proposition. Furthermore it is injective,
since any such homomorphism is determined by the image of the basis elements
1,a,...,a" ' Lastly, surjectivity is left as an exercise. O

Proposition 1.15. If (L, K) is a finite field extension and (L', K) is any field
extension, then
[Homg (L, L')| < [L : K].

Proof. Assume first that L = K(a) for some element a € L. Then by the
last proposition |[Homg (L,L')] = |{a’ € L' : f(a) = 0}] for f the minimal
polynomial. Since the degree of the minimal polynomial f equals [K(a) : K], we
conclude that the minimal polynomial has at most as many zeros as the degree
of the extension [K(a) : K].

For the general case, where L = K (ay,...,a,) have with the first case that

Homg (K (a1, ..,a,),L")|
= |[Homg (K (ay,...,a,): K(a1,...,an—1))| ...  |[Homg (K(a1), K)|
<[K(a1,...,an—1)(an),K(a1,...,an-1)] ... - [K(a1): K] =[L: K].

O

We next recall, what is means for a field extension to be separable. For this
we first define separable polynomials.

Definition 1.16. Let K be a field with algebraic closure K. A non-zero
polynomial f € K[X] that does not have multiple zeros in K is called separable.

Proposition 1.17. An non-zero polynomial f € K[X] is separable, if and only
if the polynomial f and the formal derivative f' have no common divisor in
K[X].

Proof. Assume that f € K[X] is separable. If f and f’ had a common divisor,
then, since K is algebraically closed, there was some o € K[X] such that

X-a)[f and (X-a)|f

and so by using the Leibniz rule (X — «)? | f, contradiction the assumption of
separability. The converse follows analogously. O

Proposition 1.18. An irreducible non-zero polynomial f € K[X] is separable,
if and only if the formal derivative f' # 0.

Proof. This follows straightforwardly from the last proposition. O
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Definition 1.19. Let (L, K) be an algebraic field extension. An element a € L
is called separable, if the minimal polynomial of a is separable. If every element
of L is separable, then the field extension (L, K) is called separable.

Proposition 1.20. Let L = K(ay,...,a,) be a finite extension of K and let K
be an algebraic closure of K. Then the following properties are equivalent:

(i) (L,K) is separable.

(i) Every a; is separable.

(iii) [Homy (L, K)| = [L : K].
Proof. That (i) and (ii) are equivalent is left as an exercise. That (ii) and (iii)
are equivalent follows very analogous to Proposition O

We next state a few properties of separable extensions without proof. Proofs
of these statements can be found for example in [Bos93].

Proposition 1.21. An algebraic field extension (K(A), K) for a set A is sepa-
rable if and only if every element of A is separable.

Proposition 1.22. Let (M,L) and (L, K) be separable field extension. Then
(M, K) is separable if and only if (M, L) and (L, K) are separable.

Example 1.23. Every separable field extension of a field of characteristic zero
is separable. This follows by Proposition [1.1§

1.2 Norm, Trace and Discriminant

Let (L, K) be a field extension. Denote for « € L the map
T,:L— L, T.(a) = za.

We view T, as a linear map of vector spaces over K.

Definition 1.24. Let (L, K) be a field extension. We define the norm and trace
of an element x € L as

TI“(L}K)(x) = Tr(T%), N(L,K)(ﬁ) = det(Ty).

Denote by f.(t) = det(tld — T,) = t" — a1t" ' + ...+ (=1)"a, € K|t the
characteristic polynomial of T}, then we have that n = [L : K] and

a] = Tr(L,K) (x) an = N(L,K)(‘r)

Furthermore, note that since T4, = T, + T, and T, = T, o T, we have
homomorphisms

TI'(L’K)ZL—>K, N(L’K)L*%K*

For finite separable extensions we have the following expression for the norm an
trace of an element x € L.
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Theorem 1.25. Let (L, K) be a finite separable field extension and x € L. Then

we have that
fa(t) = H (t—ox)
oc€Hom(L,K)

and thus by expanding
Trz k) (x) = Z ox and Nz i) (z) = H ox.

oc€Hom(L,K) oc€Hom(L,K)

Before proving Theorem [T.25] we state the following lemma.

Lemma 1.26. Let (L, K) be a finite separable field extension and x € L. Denote
by K an algebraic closure of K and by p, € K[X] the minimal polynomial of x.
Then we have in K[X]

pz(t) = H (t —ox).
oc€Hom(K (z),K)
Proof. This follows by Proposition and the definition of separability. [

Proof. (of Theorem |1.25) We first claim that f,(t) = p,(t)? where d = [L : K(z)]
and p,(t) is the minimal polynomial of x. To see this write

pe(t) =t +et™ 4 em

with m = [K(z) : K]. Recall that 1,2,...,2™ ! is a basis of (K (), K). Thus if
aq,...,0p is a basis of (L : K(x)) we have that

m—1 m—1
A1, TN, ..., T Alyee e, O, TOGy oo oy T [0 %]

is a basis for (L : K). The representation matrix of the endomorphism T, with
respect to this basis consists of d diagonal blocks of the form

0 1 0 0

0 0 1 0

0 0 0 1
—Cm, —Cm—1 —Cmp—2 ... —C1

Hence we conclude inductively by using the Laplace expansion that the charac-
teristic polynomial of this block matrix is equal to p,(t) and thus f,(t) = p,(t)%.
To derive the theorem we note that the set Homg (L, K) decomposes under
the relation
O~NT &S 0T =TT

into m equivalence classes with d elements. By the last lemma, if we choose
representatives o1, ..., 0, then p,(t) =[], (¢t — 0;x) and the theorem follows.
O

Corollary 1.27. Let (M, L) and (L, K) be finite and separable extensions. Then

Trr,x) © Troar,ny = Troa k), and N,y o Ny = N
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Proof. The set Homg (M, K) decomposes under the equivalence relation
o~T <= olp=17|L

into m = [L : K] equivalence classes. If 01,..., 0y, is a system of representatives,
then

TT(M,K)((E) = Z Z Oy

i1=1o0~0;

= Trom0.1(0i2)

i=1
m

= Z oiTrar ) () = Tri, k) (Trar, ) (2))-
i=1

The same calculation also works for the norm. O

Example 1.28. As a simple example, we consider the number field (Q(,/p), Q)
for a prime number p and the element 2 = /p € Q(y/p). Consider the basis
1,/p of Q(,/p) and note that T;,(1) = \/p and T;(\/p) = p. This shows that

_ (0
-1 4)
with respect to the basis 1, /p and so

Troumo (@) =0,  Naumo(@) =-p

To check the validity of Theorem [T.25, we note that by Proposition the
set Homg(Q(/p), Q) consists of the two homomorphisms o1,0_;1 : Q(,/p) = Q,

where
o+1(vp) = =V

So we have that
Tro(ym @ (@) = > ox =01(y/p) +0-1(vp) = VP + (—=/p) =0
UEHom(Q(\/ﬁ),@)
and
Nawpo (@) = I[[ or=a(p) oaWp)=vb (~Vp) =
o€Hom(Q(+/p),Q)
We next discuss the discriminant with respect to some basis.

Definition 1.29. Let (L, K) be a finite separable field extension and ay, ..., ay,
a basis of L over K. Furthermore denote by o1,...,0, the n elements of
Hompg (L, K). Then we define the discriminant of this basis as

d(ay, ..., o) = det((o;a4))°.

Note that the discriminant is well defined. More precisely, observe that for any
other choice of order of the o;, the expression det((o;;)) might at most change
by the sign. As the discriminant is the square of det((c;¢;)), it does not depend
on the choice of order of o;.
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Example 1.30. Let p be a prime number. Then the discriminant of (Q(,/p), Q)
with respect to the basis (1, /p) is 4p®.

Lemma 1.31. Let (L, K) be a finite separable field extension and aq, ..., ap be
a basis. Then
d(oa, ..., o) = det(Tr(p, k) (aj)).

Proof. Let o1, ...,0, be the elements of Homg (L, K). Then we have that

n

Trr, i) (ia;) = ngaiaj = Z(Ukai)(akaj).
k=1 k=1

Thus Tr(z, r) () is the product of the matrices (oxa;)” and (ox0;). So the
statement follows. O

Lemma 1.32. Let (L, K) be a finite separable extension with basis 1,0,...,0" "
for some 0 € L. Then

d(1,0,...,0" ") =[] 0: - 6,)°
i<j
for 0; = 00, where o1, ...,0, are the elements of Homg (L, K).

Proof. This follows since the matrix ;67 is of the form

16, 63 ... oyt

1 6, 6 ... 9371

1 60, 6 ... ot
and the formula for the Vandermonde determinant. O
Proposition 1.33. Let (L, K) be a finite separable extension and aq,...,qn a

basis, then we have that the discriminant
dlog,...,an) #0
and the bilinear form
(z,y) = Tr(L,K) (zy)
18 non-degenerate.
Proof. We first consider the case L = K () for § € L. Thus 1,0,...,6" isa
basis. Then the above bilinear form with respect to this basis is of the form
(z,y) =2’ My
for M = (Tr(f k)(0"10771))1<; j<n- By the last lemma

det(M) =d(1,6,...,0" ") = [ (6: — 6,)> #0
i<j

and we conclude that the bilinear form is non-degenerate. For a general finite
separable field extension (L, K') Corollary implies that (x,y) = Tr(z k) (zy)
is non-degenerate.

For the general case, where aq, ..., a, is a basis of (L, K), the bilinear form
with respect to this basis is given by (Tr(a;a;))1<ij<n. As (z,y) = Tr g (zy)
is non-degenerate

dloq,...,ap) =det(M) # 0.
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1.3 Integral Ring Extensions

In analogy to field extensions, we can also study ring extensions. In this section
we examine integral ring extensions, the analogue of algebraic extensions in the
setting of rings. The theory of field extensions heavily uses the theory of vector
spaces. In the setting of ring extension, we need to cope with the more subtle
theory of modules over a ring R. This has some draw backs. For example, there
is no notion of dimension for modules imitating the concept of dimension for
vector spaces. Thus we can’t define the degree of a ring extension. However,
some aspects of the theory of ring extension are similar.

Definition 1.34. Let (B, A) be a ring extension. We call an element b € B
integral over A if there are coefficients aq,...,a, € A such that

" +a " '+ ... +an_1b+a, =0.

The ring extension A C B is called integral if every element of B is integral over

A.

An important fact about integral elements is, that a sum or product of
integral numbers is also integral. This is generalized in the next theorem.

Theorem 1.35. Let (B, A) be a ring extension and consider by, ..., b, € B. The
elements by, ..., b, are integral over A if and only if the A-module Alb, ..., by]
s finitely generated.

Before starting the proof, we recall that we call a module M over a ring A
finitely generated if there is some finite set I such that R! = M.

Proof. Assume that b is integral. Then the ring A[b] is generated by 1,bq,...,b,—1.
The general case Afby,...,b,] follows from this via induction and the fact that
Albr, ..., bn] = Alb1, ..., bu—1][bn].

The other direction follows from some considerations involving linear algebra
over rings, which we won’t recall here for simplicity. A proof of this direction
can be found in Chapter 10 of [Pinl6al or on Page 7 of [Neu07]. O

With the help of this theorem we can easily deduce the next two corollaries,
one of which is the aforementioned fact that the sum or product of integral
elements is integral.

Corollary 1.36. Let (B, A) be a ring extension. If a,b € B are integral over
A, then so isa+b and a -b.

Proof. We note that
Ala,b] = Ala,b,a + b,a - b).

Thus the last Theorem implies that a + b and a - b are integral over A. O

Corollary 1.37. Let (C,B) and (B, A) be ring extensions. Then (C,A) is
integral if and only if (C,B) and (B, A) are integral.

Proof. If (C, A) is integral, then clearly (C, B) and (B, A) are integral.
Conversely assume that (C, B) and (B, A) are integral and let ¢ € C. Since
c is integral over B, there are coefficients b1, ...,b, € B with

b+ 4 b,_c+ b, =0.
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Thus c is integral over A[by, ..., b,]. Hence by Theorem[I.35|the ring A[b1, ..., by][c]
is a finitely generated module over A[by,...,by,]. Further note that A[by,...,b,]
is a finitely generated module over A, since B is integral over A. This implies
that Afby,...,bn][c] = Alb1,...,bn, ] is a finitely generated A-module and hence
¢ is integral by using again Theorem [I.35] O

Definition 1.38. Let A C B be a ring extension. The integral closure A of A
in B is defined as

A={be B : bis integral over A}.

Note that it follows from Corollary that A is a subring of B.
If A= A, then A is called integrally closed in B.

Definition 1.39. An integral domain R is called normal if it is integrally closed
in its field of fractions.

The next proposition shows that for example Z is a normal ring.
Proposition 1.40. Any unique factorization domain is normal.

Proof. Consider § € Quot(R) an element in the quotient field that is integral

over R. So there exists a1,...,a, € R with
a\™”" a\n—1

Multiplying by b" yields
a®+aba 4. +a,b" =0

Thus every prime element that divides b also divides a. Since in a unique
factorization domain, we can write every element as a product of prime elements
and some units, it follows that 7 € R. O

An integral basis, which is defined next, imitates the notion of a basis in the
setting of vector spaces. However, in contrast to the theory of vector spaces,
integral bases do not always exist

Definition 1.41. Let (B, A) be an integral ring extension. A system of elements
w1, ...,w, € B is called an integral basis of B over A if every element b € B can
be written uniquely as

b=aiwi + ...+ apwn

for coefficients a; € A.

In the following, we consider A be a normal integral domain with quotient
field K. Furthermore let (L, K) be a finite separable extension and let B the
integral closure of A in L. Note that by Corollary then ring B is integrally
closed in L. If furthermore z € B is an integral element of L then we also have
that oz is integral for any field homomorphism o € Homg (L, K). With the help
of Theorem we derive that

Trz,x)(2), Nz i) (%) € A.
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Proposition 1.42. In the above setting, any integral basis of B over A is also
a basis of L over K. Thus the length of any integral basis of B over A is equal
to the degree [L : K].

Proof. 1t suffices to show that every element 8 € L can be written as

b
Bzia
a

where b € B and a € A. To see this, choose some § € L. Since [ is algebraic,
there is n > 1 and ky,...,k, € K such that

B4+ kB 4. 4k, =0.

If we write k; = 2 for af,a] € A, we derive after multiplying with afay ...aJ,

1) 'n
that
"+ a1V N+ +ap=0
for some a; € A. By multiplying the last equation with a”~1, we conclude that

the element b = a, 3 is integral over A and thus contained in B. So the claim is
proved. O

If A is a principle ideal domain the next theorem guarantees the existence of
an integral basis.

Theorem 1.43. Let A be a principle ideal domain with quotient field K. Fur-
thermore let (L, K) be a finite separable extension and let B be the integral
closure of A in L. Then every finitely generated B-submodule M # 0 of L is a
free A-module of rank [L : K|. In particular, the ring B has an integral basis
over A.

We first prove the following lemma.

Lemma 1.44. Let a,...,a, be a basis of L over K that is contained in B
with discriminant d = d(aq, ..., ay). Then we have that

dB C Aoy + ...+ Aay,.

Proof. If o = a10q + ... 4+ anoy, € B with a; € K then the a; solve the linear
system of equations

T, x) (i) = Z Tr(z, k) (icyj)ay.
J

Note that Tr(r, x)(aioy;), Tr(p k) (ia;) € A and that det(Tr(p, x)(aicy)) =
d(ai, ..., o) # 0. Hence each coefficient of the inverse of the matrix Tr(z, k()
can be expressed as a fraction between an element of A and d. Thus a; is also a
fraction of an element in A by d. Thus da; € A and hence

do € Aoy + ...+ Aa,,.
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Proof. (of Theorem Let M # 0 be a finitely generated B-submodule of L
and a1,...,a, a basis of L over K. By the proof of Proposition we can
multiply with a suitable element from A to achieve that the basis is contained
in B. By the last Lemma we then have that

dB C Aag + ...+ Aa,, =:

for d =d(a1,...,ay). Note that My is a free A-module of rank n, as a1, ..., ay
is a basis of (L, K).

If pi1,..., ur € M is a generating set of the B-module M, there again is some
a € A with ap; € B for all 1 <7 <n. Thus aM C B. So we derive that

adM C dB C Aoy + ...+ Aay,

By the fundamental theorem of modules over a principle ideal domain, we
conclude that since Mj is a free A-module, the module adM and so also the
module M is free over A. Since

rank(M) = rank(dM) < rank(My) < rank(M),

where the last inequality follows as My C B. So we proved rank(M) =
rank(My) = [L : K]. O

We now reduce to the case A = Z, K = Q and consider a number field K
and denote by Ok the integral closure of Z in K. We usually call Ok the ring of
integers of K. It turns out, as we show next, that in this setting the discriminant
is independent of the choice of basis as long as we choose integral bases.

Proposition 1.45. Let aq,...,a, be an integral basis of Ok over Z. Then the
discriminant
2
dai, ..., o) = det((o;05))

does not depend on the choice of the integral basis.

We then call
dK = d(al, cee ,Oén)

the discriminant of the number field K where aq, ..., a, is any integral basis of
Ok.
Proof. Let of,...,al, be another integral basis of O over Z. Then the transfor-

mation matrix T = (a;;), a; = >_; a;;; is an integer matrix, where the inverse
of this matrix also consists of integers. Hence det(T) = £1. Note that

Trp, i) () = Trp, k) (Z a; Z ajkak>
l k
= Z g (Z ailalZajkozk>
) l k

o€Hom(K,Q
= E ailaj E olagayg)
Lk o€Hom(K,Q)

= Z aga;rTr(ogoy)

1,k
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This implies
d(ay,...,a)) = det (Tr(LK)(oz;oz;))
= det (TQTr(L,K) (aiaj))
=det(T)?d(ay, ..., an) = d(aq,...,an).
O

Proposition 1.46. If a C a’ are two non-zero finitely generated Ok modules
of K, then the index (o' : a) is finite and we have

Proof. The two modules a and a’ both have rank n = [K : Q]. So any integral
basis of a and a’ have the same length. Thus let aq,...,a, be an integral basis
of a and «of,...,a], be an integral basis of a’. Let A be the transformation
matrix from aq,...,q, to af,...,a),. Then by the same calculation as in the
last proposition we have that

d(a) = det(A)%d(d).
So we need to prove det(A) = (a’ : a). (How to prove this?) O
We next give two the following example.

Proposition 1.47. Let d be a square free integer and consider K = Q(+/d).
Then we have that the ring of integers is

Op — Z {1'*'2\/&} ifd=1 mod 4,
Z[\/d) ifd=2,3 mod 4.

Moreover the discriminant of K is

do — d ifd=1 mod 4,
K7 V4d ifd=2,3 mod 4.
Before proving this proposition we start with the following lemma.

Lemma 1.48. Let K be a number field. Then an element x € K is an algebraic
integer if and only if the minimal polynomial of x has integer coefficients.

Proof. If the minimal polynomial of z € K has integer coefficients, then x is
clearly algebraic. Conversely assume that « € K is algebraic. Then it is the root
of a monic polynomial with integer coefficients. So it will be the root of one of
its irreducible factors which has again integers coefficients. O

Proof. (of Proposition1.47) First note that in any case

ZIVd) = Z & ZVd C Ok.
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Using the last lemma we see that if 2 = a +bv/d € O with a,b € Q we have
that the minimal polynomial of z over Q has integer coefficients and is of degree
2 as [K : Q] = 2. Thus we have

Trg.g)(z) =2a€Z and Nx)(r) = (a+ Wd)(a —bVd) = a® — b?d € 7.

This shows that there is an integer n with a = 5. Thus
2
a? — b2d = ”Z 1 02d €7 orequivalently n? + 4b2d € 47.

We note that if b ¢ %Z, then we have that 4|d, which is a contradiction. Thus
we have that b € %Z. Thus we conclude that

ZIVdl c Ok C %Z @ %Z\/&.

To determine O it this suffices to consider

a b 1 1
=—4+ -Vde=-ZD-7ZVd
T 2+2f62 @2f

with a,b € Z, we note that
1
Trg.(r) =a€Z and Ngx)(z)= Z(GQ —b2d).

So we see that z € Ok if and only if a? — b?d € 47Z.

To determine for which such x this holds. we proceed by a case distinction.
First, note that if both a and b are even, then this is clearly the case. Next if a
is even and b odd then we have b> =1 mod 4 and thus

a?—b’d=d#0 mod 4
as d is square-free. The case where a is odd and b is even yields
a> - b*d=a’>=1 mod 4.

So this shows that if ¢ and b do not have the same parity then z ¢ Ok
Lastly consider the case where both a and b are odd. Then we have that

a>—b*d=1—d mod 4.

So we see that in this case z € Ok if and only if d =1 mod 4. To summarize
we see that

Z[\/d) if d=2,3 mod 4.

_[z|=4] ita=1 mod4,
Z[Vd) if d=2,3 mod 4.

0 {{‘2‘+g\/g:a,b€Zsuchthatab mod 2} ifd=1 mod 4,
K:

We conclude by calculating the discriminant. First assume d =1 mod 4. By
the above, 1, 14Vd jg ap integral basis of Ok. So we have

2
1 1++/d 2
dic=det (|| 25]) =d
2
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Second, let d = 2,3 mod 4. In this case 1,v/d is an integral basis of Ox. Then

dK:uht<(1 :6%))2:4¢

1.4 Ideals and Dedekind Rings

Let K be a number field and denote by O the ring of integers in K. In general,
the ring of integers is not a unique factorization domain and hence also not a
principle ideal domain. However, the ideals of Ok can be factored uniquely into
prime ideals. The main aim of this section is to prove this for a larger class of
rings, namely so called Dedekind rings.

Definition 1.49. A Dedekind ring is a noetherian normal integral domain of
Krull dimension 1, i.e. every non-zero prime ideal is maximal.

We first show that the rings Ok are indeed Dedekind rings.

Proposition 1.50. Let K be a number field and denote by Ok the integral
closure of Z in K. Then Ok is a Dedekind ring.

Proof. We proved in Theorem [I.43|that every ideal a of Ok is a finitely generated
Z-module, thus it is also a finitely generated Og-module. This implies that O
is noetherian. Furthermore we claim that the field of fractions of the ring Ok is
the ring K. To see this, let aq,...,a, be an integral basis of Ok over Z whose
existence is guaranteed by Theorem So we have that O = Zlay, ..., ay).
Furthermore by Proposition [1.42] we have that a,...,«, is also an integral
basis of L over K. Thus we have that

Quot(Ox) = Quot(Z)(a1,...,an) = Qlaq, ..., apn) = K.

Then by Corollary [[.37 we have that Ok is integrally closed in K and so O is
integrally closed in its field of fractions and thus is normal.

Recall that if A C B is an integral ring extension, then the Krull dimension
of A and B are equal. Thus dim(Ok) = 1 since dim(Z) = 1. O

For two ideals a and b we define
a+b:={a+b:a€cabeb}

and
n
a-b:.= {Zaibi ca; €a,b; € b}
=1

We usually write ab instead of a - b. Furthermore note that ab is contained in
a as well as in b. The main aim of this subsection is to prove the following
theorem.

Theorem 1.51. Let O be a Dedekind ring. Then every non-trivial ideal a of O
has a decomposition

a=pi...p

into prime ideals p; C O. This decomposition is unique up to reordering.
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We first prove two lemmas.

Lemma 1.52. Let a be a non-zero ideal of O. Then there are non-zero prime
ideals Py, ..., p, with
a>dpr...pn.

Proof. To prove the statement by contradiction assume that the set .# of ideals
not satisfying this property is not empty. Since O is noetherian, the set .#
together with the inclusion of sets satisfies the assumption of Zorn’s Lemma and
so there is a maximal element a. The ideal a can’t be prime, since no element of
M is prime. Hence there are elements a1, as & a such that ajas € a. So consider
the ideals a; = a+ (a1) and az = a+ (a2) and note then that a C a; and a C as
but ajas C a. Since a is a maximal element of .#, the ideals a; and as are not
an element of .#. Thus they contain a product of prime ideals. Since ajas C a,
the ideal a also contains a product of prime ideals. This is a contradiction to
the assumption. O

Next denote by K the quotient field of O and for any prime ideal p C O we
define
pli={zcK:zpc0O}DO.

Lemma 1.53. For any non-zero ideal a C O and for any prime ideal p C O we
have that

ap~! #£a.

Proof. We first claim that p~! # O. To see this choose some non-zero element
a € p. With the last lemma we can choose prime ideals p1,...,p, C O with r
minimal such that

p1...pr C (a) Cp.

One of the ideals p; has to be contained in p, since otherwise we can choose
pi € pi\p with p;...p. € p. Assume without loss of generality that p; C p
and by maximality of p; we conclude p; = p. Since r is minimal, we have
that pa...p, € (a), so we can choose b € pa...p, with b & (a) or equivalently
a='b ¢ O. On the other hand bp = bp; C (a), which is again equivalent to
a=tbp C O. So a='b € p~! and this shows that p~! # O.

Next let a be an ideal in O with generators aq,...,a,. We assume for a
contradiction ap~! = a. So for any x € p~! we have that

To; = E [Z¥187]
J

with a;; € O. Denote A = (zd;; — a;;) and so A(ag,...,a,)T = 0. Thus
det(A)a; = ... = det(A)a, = 0 (This follows from Theorem 2.2. of [Neu07]).
Since O is an integral domain, we conclude det(A4) = 0. This implies that z is a
zero of the normed polynomial f(X) = det(Xd;; — a;;) € O[X], in conclusion
since O is integrally closed in K we have x € O. So we proved p~! = O, a
contradiction to the first step. O

We now prove Theorem |1.51
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Proof. (of Theorem We first prove existence by an analogous method to
Lemma [1.52] Denote again by .# the set of non-trivial ideals of O that do not
have a decomposition into prime ideals and assume that .# is not empty. So
there is an element a € .# that is maximal with respect to inclusion. Let p be a
maximal ideal that strictly contains a. Using O C p~! and a C p we derive the
chain of inclusions

acaptcpptcoO.

Applying the last lemma twice, we see that a C ap™! and p C pp~!. The
maximality of p implies pp~! = O. Furthermore, since a is a maximal element
in .#, the ideal ap~! has a decomposition into prime ideals, say

-1

ap " =p1...pr

and so we conclude
a=app=pr...pp
To prove uniqueness, recall that for a prime ideal p the following property

holds: If ab C p then we have that a C p or b C p. So if we have two
decompositions of the ideal a into prime ideals

a=p1...Ppn=0q1 ... qm,

then we have that q1...q,,, C p1 and so there is some q; C p;. Since q; is
a maximal ideal we get q; = p;. Continuing this process, uniqueness of the
decomposition into prime ideals follows. O

Definition 1.54. Let O be a Dedekind ring and denote by K the field of
fractions of O. A fractional ideal is a non-zero finitely generated O-submodule
of K. We denote by Jx the set of fractional ideals.

The next theorem states that the set Jx together with the multiplication of
ideals forms a group. Thus Jg is called the ideal group of K.

Theorem 1.55. Let O be a Dedekind ring and denote by K the field of fractions
of O. Then the set of fractional ideals Ji forms an abelian group together with
the multiplication of ideals. The unit element is (1) = O and the inverse of a
fractional ideal a is

al={reK:zac0O}

We first prove the following lemma.

Lemma 1.56. For every fractional ideal a of K there is some non-zero element
c € O such that ca C O.

ai

Proof. By definition, a is generated by elements §*,..., 3= for a;,b; € O\{0}.
So we have that by ...b,a C O. ' O]

Proof. (of Theorem The group operation is associative and commutative,
since these properties hold for the multiplication in O. Furthermore, we clearly
have a(1) = a. Next, we note that if p is a prime ideal of O, then we have by
Lemma that p C pp~! and so pp~! = O. Second, we consider an ideal a in
O. This is a fractional ideal, since O is noetherian. By Theorem [1.51| we have a
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decomposition into prime ideals a = p; ...p,, and we claim that b = pfl copt
is equal to a=!. The inclusion b C a~! follows by ba = O. For the second
inclusion consider an element x € K with za C O. So xab = xO C b and this
shows = € b. So we proved aa~! = ab = O for any ideal a in O.

Using the last lemma, the general case where a is a fractional ideal can be
reduced to a being an ideal in O. More precisely, there is an element ¢ € O such

that ca C O and hence ¢~ 1a~1! is an inverse of ca in @. This shows aa~! = 0. O

Corollary 1.57. The ideal group Jx is the free abelian group generated by the
nonzero prime ideals p of O.

Proof. We need to show that every fractional ideal a can be written uniquely as
a product
a= H p¥r
p

with v, € Z and v, = 0 for almost all p. This follows since every prime ideal is
a quotient a = b/¢, where b and ¢ are two ideals of O. Thus the statement is
implied since every ideal of O can be written in a unique way as a product of
prime ideals as provided by Theorem [1.51 O

With this in mind, we can define the so called ideal class group that measures
how far the ring O is from being a principle ideal domain and thus also a unique
factorization domain.

Definition 1.58. Let O be a Dedekind ring and denote by K the field of fractions
of O. We call a fractional ideal a principal if it is of the form a = (a) = aO for
a € K. We denote by Pk the subgroup of the ideal group Jx consisting of the
principal fractional ideals. The factor group

Clx = Ji/Px

is called the ideal class group or just the class group of the field K. The order of
Clg is called the class number of K.
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2 Gauss’s Reciprocity Law

2.1 The Decomposition of Primes in Ok

The aim of this subsection is to study the question whether an integer a is a
quadratic residue for a prime p, i.e. whether the congruence

z2=a modp
has a solution or not. We will study this question in the next subsection and
first introduce some new terminology which will turn out to be useful towards.
Let K be a number field of degree n and Ok be its ring of integers. If p € Z
is a prime, then the ideal pOg C Ok does not have to be a prime ideal, but we
have a decomposition
POk =pit-...-pyr.

Definition 2.1. In the above setting, any of the p; is called a prime divisor of
p. The exponent e; is called the ramification indezr, and the degree of the field
extension f; := [Ok /p; : Z/pZ) is called the inertia degree of p; over p.

Proposition 2.2. (Fundamental identity) We have
Zeifi = [K . Q] =n.
i=1

We now simplify the above situation. We consider the case where K = Q(0)
for some algebraic element  with minimal polynomial p(X) € Z[X]. We define
the conductor of Ok which is contained in Z[f] as

F={ae Ok : a0k C Z[0]}.

Since Ok is a finitely generates Z-module, we see that the conductor is non-
empty.

Example 2.3. We consider the case K = Q(\/&) for d a non-square integer.
We have seen that

O — Z[[HQ‘/E] ifd=1 mod 4,
7 \zivd  ifd=2,3 mod 4.

We claim that in any case, the conductor F = Z[V/d]. In the case d = 2,3
mod 4 this is clear as O = Z[Vd]. For d = 1 mod 4, let o € F. Then
a=a-1¢€Z[Vd] and so we see that

]-':{ner(dJrT‘/E) . n € Zand m € 2Z} = Z[Vd).

Proposition 2.4. Let p € Z be a prime number and assume that pOk is
relatively prime to the conductor F of Z[0], and let

TD(X) = ﬁl(X)el R .TJT(X)&,,

be the factorization of the polynomial D(X) = p(X) mod p into irreducible
polynomials p;(X) = p;(X) mod p with all p;(X) € Z[X] monic. Then

p; = pOxk + pi(0)O
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fori=1,...r. The inertia degree f; of p; is the degree of p;(X) and one has

p=prp

2.2 The Splitting of Primes

Notations are as in the last subsection.

Definition 2.5. We say that the prime p € Z splits completely in K if in the
decomposition

POK =5 b

we have r =n=[K : Q] and soe; = f; =1 for all » = 1,...,n. The prime
number p is called non-split if » = 1, i.e. there is only a single prime ideal of L
over p.

The prime ideal p; in the decomposition pOx =[]}, is called unramified
over Z of e; = 1 and the residue class field extension O /p; : Z/pZ is separable.
If not, it is called ramified and totally ramified if furthermore f; = 1.

We next introduce the Legendre symbol. Let p be a prime number and let

a 2

a € Z so that ged(a,p) = 1. We then define (5) =1 or —1 according as x* = a

mod p has or does not have a solution.
Lemma 2.6. The Legendre symbol satisfies the following properties:

1. For a and b integers with ged(a,p) = 1 = ged(b, p) we have

()-C)G)

2. For a € Z with ged(a,p) = 1,

3. We have,

G

a€(zZ/pL)*

4. For a € Z with ged(a,p) =1,

Proof. We consider the group of units [, and recall that it is cyclic of order
p — 1. Thus the subgroup F3* has index 2 and so F},/F3? = Z/27. This shows
1. and 2. and 3. The last claim follows as b> = a mod p if and only if b2 = a

mod p. O



2. Gauss’s Reciprocity Law 24

Proposition 2.7. For a square-free a and (p,2a) = 1, we have the equivalence

<;> =1 <= pis totally split in Q(/a).

Proof. By assumption p # 2 and so pOy is relatively prime to the conductor
F = Z[y/a]. Hence we can apply Proposition to see that p splits totally
in Q(y/a) if and only if the polynomial X? —a mod p decomposes into linear
factor.

If for o, 8 € F), we have X2 —a = (X —a)(X — ) = X?—(a+ )X +af then
B = —o and a8 = —a?. This calculation shows that X2 —a mod p decomposes
into linear factor if and only if (%) =1. O
Example 2.8. By Proposition We see that 11 is split in Q(v/5) but 3,5 and
7 are non-split.

2.3 Gauss’s Reciprocity Law
Theorem 2.9. (Gauss’s Reciprocity Law) Let £ and p be two distinct odd primes,

then
() (5) = v

We defer the proof for a moment, in order to prove a useful lemma.

Lemma 2.10. For p any odd prime,

() e ()ms

—1 p—1

Proof. As (‘71) = (—1)% mod p and as p # 2 we have that (_—1) =(—12).

P
To calculate (%), we work in the Gaussian integers Z[i]. As (14 i) = 2i we
have

A+ =1+)(1+0)>)7T =(1+i2ziz.

As (14+49)P=1+74P modpand( ):

p—1
2
2 925+
p

mod p, it follows that

P . .
<> 1+ z)le =1+ i(—l)Tl mod p.
p

If % is even, then the above equation simplifies to

(;) (1+i)(~1)* =1+i modp

p—1
and so (2) =(-1) 7 mod p. In this case Z£* is odd and as PPl _ p-lptl
P g

P
we conclude that (%) = (—1) 8 . A similar calculation applies to the case

where % is odd. O
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Proof. (of Theorem We now work in the ring Z[(], where ¢ is a primitive
£-th root of unity. We consider the Gauss sum

- @
ac(Z/e2)*

A calculation yields

N
</
—
'
\]
(V]
I

3 (‘Zb) cath

a,be(Z/0Z)*

ab\ ._
(F)e
a,be(Z/L7)*

ab™? _
< 7 ) Ca b
a,be(Z/0Z)*

- T, (e

b,cE(Z/LL)*

S5 e s (1)

c#1 be(Z/0Z)* be(Z/0T)*

I
(]

(]

where we made in the third fourth line a change of variables given by ¢ = ab™!.
By 3. of and as (%) =1, we derive ZC# (%) = —1. As £ = (¢! is again
an {-th root of unity and as 3-yc ;/sz)- el — g4 24 41 = -1 we
conclude )

(€> 2= (=1)(-1)+l—1=1
or equivalently 72 = (_71) l
As (ﬁ) = ("> mod p and () = (—1)[771, we conclude

p

P =

I
2
3

(]
v
=)
[}
(oW
i

Il
\]
—
m‘ ‘

—-
~
y
~
v
=
15
A
hS]

If
A
|
_
N~—

.

]
A~
SRR
N

=

S

&

S

On the other hand one has

= (e = QTG (@) mar

a

()

and so multiplying by 7! and (%) the claim follows. O

so that
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3 Lattices

3.1 Lattices in Vector Spaces

Throughout this section denote by V' an n-dimensional vector space over R.

Definition 3.1. A lattice I in the vector space V is a discrete subgroup of V
of the form
I'=2Zvi+...+ Zv,,

where v1, ... v, form a basis of V.

We aim at giving an equivalent characterization of lattices in V. In order to
achieve this, we first describe discrete subgroups of V' in a uniform way.

Theorem 3.2. A subgroup I' of V is discrete if and only if
I'=Zvi+...+ Zvn,,

where vy, ..., vy are linearly independent vectors and m < n.

Proof. First assume that I is of the above form. Let v = zyv1 + ... + zpvy, €T
with z1,..., 2y, € Z. Then the open set

1
{z1v1 + ... + 2pVp \xifzi\<§for1§i§m}

contains v but does not contain any other element of I'. Hence I is a discrete
subgroup.

Conversely assume that I' is a discrete subgroup. Denote by V{, the vector
space generated by I'. So there is a basis vq, ..., v, of Vi which is contained in
I". Next we consider the following subgroup

I'o=%v1+...+2Zv,, CT

and note that, as I" is abelian, the quotient I'/T'y forms an abelian group. As a
preliminary step, we show that the group I'/I'y is finite. Therefore choose a set
of representatives v; € I'/Ty for i € I, where T is some index set. We denote

S={z1v1+...+Tpvy,  0< 2, <1for 1 <i<m}
and observe that ® + I'g = V. So we can write

Vi = pi +

with p; € ® and 49 € T'g. Consequently u; =7; — 2 € I' N ®. This implies that
the index set I must be finite since I' is discrete and ® is bounded.
Denote by d the order of T'/T'y. Hence there are elements 71, ...,74 € " such
that
I'= (71 +F0)+...+(7d+1—‘0).

As T'/Tq is a group of order d, every element has an order divisible by d. We
conclude dv; € T'y and so

dF:(d’71+F0)+...+(d’7d+Fo)CFO
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or equivalently

1 V1 Um
rc-I'y=Z—+...+2—.
C d 0 d + + d

The last relation shows that I' is a finitely generated abelian group. Hence
the fundamental theorem of finitely generated abelian groups shows that I' =
Zvi + ...+ Zvy, for vy,..., vy linearly independent vectors in V. O]

With the help of this we can prove the following two corollaries, that charac-
terize lattices in V' and in the special case V = R™.

Corollary 3.3. A subgroup I' in V is a lattice if and only if T is discrete and
generates V.

Proof. This follows immediately from the last theorem and the definition of a
lattice. 0

Corollary 3.4. A subgroup of R™ is a lattice if and only if T is discrete and
the quotient R™ /T is compact.

Proof. (of Theorem [3.4]) First assume that I' = Zv; + ... + Zuv, is a lattice in
R™. Then T is by the last theorem discrete. To see that R™/T" is compact, we
note that we have a homeomorphism

Tn%Rn/F, (th...,tn)l—>t11)1—|—...—|—tnvn,

where T" := R"/Z™ = [0,1)™. Thus R"/T" is compact, as T™ is.
For the other direction, we note that if I' = Zvy + ... 4+ Zv,, for m < n, then
we have analogously to the first part a homeomorphism

T x R*"™™ = R"/T (t1y .o ostn) = 101+ oo+ U + b1 + - o+ ta.
So we conclude that R?/T" is not compact. O

In the following we consider the n-dimensional real vector space V' with an
inner product (-, -), elevating the vector space V' to a euclidean vector space. We
want to study V together with a measure. The natural choice in this setting is
to take the Haar measure on V that gives measure 1 to the cube spanned by
any orthonormal basis of V' with respect to the inner product. This measure
defines the volume of any set X in (V, (-, ).

Let next vy, ...,v, be some vectors in V and consider the set

S ={z1v1+...+xyv, : 0<x; <1for 1 <i<n}.

The volume of ® is then
vol(®) = | det A,

where A = (a;;) is the transformation matrix from an orthonormal basis
e1,...,en to the vectors vy,...,v,, i.e. Av; = ZZ=1 a;per. Note that

((vi,07)) = O amag(ei e;) = (Y ainazy) = AA"
k,l k
Hence we can also write

vol(®) = | det((vi,v;))|?.

With all this in mind we define the volume of a lattice.
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Definition 3.5. Let V be a n-dimensional euclidean vector space and
'=wvZ+...4+v,7Z
be a lattice in V. Then we define the volume of I" to be
vol(T') = | det((v;, v;))|? = vol(®).

We furthermore call ® the cube spanned by I'. If vol(I') = 1, we call the lattice
unitmodular.

Recall that a set X C V is called centrally symmetric if for all z € X we also
have —z € X.

Theorem 3.6. (Minkowski’s Lattice Theorem) Let V' be a n-dimensional eu-
clidean vector space and I' be a lattice in V. Furthermore assume that X is a
centrally symmetric convex set in V and assume that

vol(X) > 2"vol(I).
Then X contains a nonzero element of I'.

Proof. We claim that there are distinct elements v; and 2 of I' such that

(;X +71) N @X +72> £ 0.

Assuming this we have z1, x5 € X with

= + L +
—a = —x
571 71 5 T2 Y2
or equivalently using convexity of X
1

1
5551 - 5552 =Y -7 € (X N F)\{O}

To prove the claim assume that the sets %X + v are distinct for all v € T'.

Thus
vol(®) > ) " vol <<I> N (;X +7>>

yel’

>3 vol ((q» N ;X>

yell
1 1
= vol <2X> = 27V01(X)7

where we used in the second line translation invariance of the Haar measure
and in the third the fact that ® — v with v € T covers V. Thus we derived a
contradiction to the assumption vol(X) > 2™vol(T"). O

Remark. The bound in the above theorem is sharp. More precisely for the
lattice I' = v1Z + ... + v, Z note that the set

{r1v1 4+ ...+ xpv, + —1<a; <1lforl<i<n}

is convex centrally symmetric and of volume 2"vol(I") but does not contain any
nonzero element of T'.
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Corollary 3.7. Consider R™ with the standard inner product and let I' be a
lattice in R™. Then there is a nonzero element of I' with length less that r,vol(I")
for some constant r,, only depending on n.

Proof. We show that we can choose r, = 2y/n. To apply Theorem choose
the centrally symmetric and convex set

X ={zeR?: z; € (=2vol(I') =, 2vol()*) for 1 < i < n}

which has
vol(X) = 4"vol(T") > 2"vol(T")

and hence X contains a nonzero element v € I'. Note that the length of 7 can
be bounded by

lls < \/4vol(7)% + ... 4vol(7)F = 2¢/ - vol(T).

3.2 The Space of Unimodular Lattices

In this section we reduce to the case V = R"™ together with the standard inner
product. Consider a lattice

I'=%2Zvi+...4+ Zv,

in R™ for vq,...,v, € R" linearly independent vectors. Write g for the matrix
whose columns consist of the vector vq,...,v,, i.e.

U1

V2

g=1 . | € GL,(R).

v3
Then

Ir=7"g,

where we view Z™ as column vectors. Thus we can view the space of lattices
as the orbit of the vector Z™ with respect to the right action of GL,(R) on R™.
Note that the volume of T' is equal to the volume of [0,1)"¢ and hence

vol(T") = | det(g)|-

We denote by X, the space of unimodular lattices in R™, i.e. of lattices of
volume 1. By the above, X, is the orbit of Z™ for the SL,,(R) left action R™.
We observe that the stabilizer of this action has the following form.

Lemma 3.8. The stabilizer of Z¢ is
StabSLn(R) (Zd) = SL”(Z)

Proof. If g € SL,,(R) satisfies Z"g = Z", then clearly every coefficient of ¢ is an
integer so g € SL,,(Z). Conversely if g € SL,,(Z), then the lattice Z™g satisfies
Z"g C Z™ and has volume 1. Thus gZ" = Z". O
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This lemma shows that we can write the space of unimodular lattices as
X, = SL,(Z)\SL,(R).

By transporting the topological structure on SL,,(Z)\SL,(R) to X,, we can view
the space X, as a topological space.

We conclude this section by characterizing compact sets in X,,. In order to
achieve this, we consider for any I' C R™ a lattice the number

A(T) = min{r : T contains a non-trivial vector of length < r}.

Theorem 3.9. (Mahler’s compactness criterion) A subset C C X,, has compact
closure if and only if they are uniformly discrete, i.e. there is some § > 0 such
that A\(T') > 6 for allT € C.

Proof. Let K C X,, be compact and assume for a contradiction that K is not
uniformly discrete. Hence there are lattices I',, € K with

AT,) <

S|

for all n. By compactness there is some I' € X, such that I', = I'. As A(T")
depends continuously on T' this contradicts the assumption that A(T';) < % for
all n.

Assume conversely that K C X,, be uniformly discrete and let I' € K. We
show by induction that we can find a basis of vectors by, ...,b, € I' that belong
to a given ball of radius depending on §. First note that the case n = 1 is clear.

Next assume 1 > 2 and assume that the claim is proven for (n —1). Choose
b1 € T with the property that

[[b1]] = A(T) = 6.

As by is the smallest vector in I note that we can bound the covolume of T’
from the volume of By, |(0). As I' is unimodular, we that have a constant Cy
only depending on the dimension d such that ||b;|| < Cy4. Denote by W the
orthogonal complement of Rb; with respect to the standard inner product of R™
and by 7 : R — W the canonical projection. Then

FW = Ww(r)

is a (d — 1)-dimensional lattice, which doesn’t have to be unimodular but has
covolume ﬁ. So after rescaling we may assume that 'y is unimodular. By
the inductive hypothesis we can find a basis we have a suitable basis for I'y,
that can be lifted to a suitable basis for I'. O

Corollary 3.10. For § > 0 any set of the form
Xn(6)={TeX, : \T') >6}
18 compact.

Proof. This follows from Theorem O
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3.3 Lattices in Topological Groups and Haar Measures

In this subsection we generalize the notion of a lattice to a more general setting.
In order to discuss this properly we first discuss discrete subgroups and Haar
measures.

Throughout this section we consider by G a locally compact, o-compact
metric group G with a left invariant metric dg on G. If T is a discrete subgroup
we denote X := T'\G. We say that X is a locally homogeneous space. The metric
dg descends to a metric on X defined for g1,g2 € G as

dx(Tg1,Tg2) = inf _da(v191,7292) = inf d(vg1, g2).
Y1,72€C ~yel

For g € G, we write BY(g) and BX (T'g) for the metric r-ball in G and respectively
X.

Definition 3.11. A left Haar measure on a topological group G is a Borel
measure u that satisfies the following three properties:

1. u(K) < oo for any compact subset K C G.

2. u(O) > 0 for any open subset O C G.

3. u(gB) = u(B) for any g € G and measurable B C G.
A right Haar measure is defined accordingly.

Theorem 3.12. Any metric, o-compact and locally compact topological group
G has a left (or right) Haar measure, which is unique up to scalar multiples.

Proof. For a proof see [EW18] Chapter 10. O

Proposition 3.13. Let G be a locally compact topological group with left (or
right) Haar measure . Then G is compact if and only if u is finite.

Proof. If G is compact, then by definition of a Haar measure we conclude
1(G) < oo. Let conversely G be a topological group with finite left (or right)
Haar measure p. Assume that G is not compact and let U be a compact
neighborhood of the identity element e € G. Then we can cover G by infinitely
many disjoint translates of U an conclude that the Haar measure on G is not
finite. O

Definition 3.14. We call a group G unimodular if any left Haar measure is also
a right Haar measure and any right Haar measure is also a left Haar measure.

Definition 3.15. Let I' < G be a discrete subgroup and write X = I'\G. A
fundamental domain for X is a measurable subset F' C G with the property that

G = |_| ~vF.
~el

Write
WxiG%X

for the natural projection.
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Proposition 3.16. For any locally homogeneous space X there exists a funda-
mental domain. Moreover any two fundamental domains of X have the same
measure.

Proof. Can be found in Page 10 and 11 of [EW]. O
Given a fundamental domain F' for X, we thus define a measure ux on X by
ux(B) = u(r5(B) N F),
where p is a left Haar measure on G.
Proposition 3.17. Then the following properties are equivalent:
1. There exists a G-invariant probability measure on X.

2. There is a fundamental domain for X that has finite measure with respect
to any left invariant Haar measure.

3. There is a fundamental domain for X that has finite measure with respect
to any right invariant Haar measure and any right Haar measure is left
I-invariant.

If any of these conditions hold, the group G is unimodular.

Definition 3.18. A discrete subgroup I' < G is called a lattice if any of the
three equivalent conditions of the Proposition hold. In particular, X admits
a G-invariant probability measure.

Corollary 3.19. If a G admits a lattice, then G is unimodular.
Proof. This follows from Proposition [3.17] O

3.4 Lattices for Unipotent Subgroups
We denote the upper triangular group
1 =x
U, = . ) C SL,(R)
1

with the Lie algebra of strict upper triangular matrices

n= . . C sl,(R).
0
We call a subgroup G < SLg(R) unipotent if there is some g € SL,,(R) such that
gGg~! is a subgroup of U,.
Recall furthermore that a subspace V' of R" is called rational, if there is a
basis consisting of vectors from Q.

We are now ready to prove the next theorem, which gives us a large class of
examples of lattices and describes them in a suitable manner.
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Theorem 3.20. Let G < SL,(R) be a £-dimensional connected unipotent sub-
group whose Lie algebra g is a rational subspace of sly(R). Then

G(Z) = G N SLq(Z)

s a cocompact lattice in G. Furthermore, there exists a Mal’cev basis vy,...,vp €
gNsly(Q) (see below for a definition).

In the setting of Theorem we call vectors vy,...,v; € gNsly(Q) are
called a Mal’cev basis if we have that
G(Z) = {exp(kiv1) exp(kava) . ..exp(keve) : k1,...,ke € Z}
G = {exp(s1v1) exp(sava) ... exp(sevy) : 81,...,8¢ € R}

and if

F = {exp(s1v1) exp(sav2) . ..exp(seve) : S1,...,80 € [0,1)}
is a fundamental domain for G(Z) in G.

Proof. Denote by g the Lie algebra of G. Then by assumption g is conjugated
to a a subalgebra of n and hence g nilpotent and the exponential map is given
explicitly for v € g by

1 1
eXp(U):I+U+§’UQ+...+mUd_1

and hence is a polynomial on g and the logarithm is thus given for g € G by

1 1 _
log(g) =g =T = 5(g =D +...+ (-1)'——(g= )"
and hence exists for all g. This shows that the Lie group exponential is a
diffeomorphism. All this allows us to define a group structure on g given by

v *w = log(exp(v) exp(w))

for v, w € g such that the exponential map can be viewed as an isomorphism of
Lie groups.
Consider g; = [g, g] and note that

[91,0] C [g,9] = ;1

and hence g; is a Lie ideal. Denote by Gj the normal Lie subgroup of G
associated to gi. Thus G/G; is an abelian subgroup with Lie algebra g/g;. As
g1 * g1 C ¢, we conclude that the group G/G; can be identified with g/g; via
the exponential map.

Finish later... O
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4 Class Numbers and Units

4.1 Minkowski Theory

Let K be a number field of degree n and let Ok be the ring of integers of K.
Denote by
H := Homg(XK,C)

the set of field homomorphisms from K to the algebraically closed field C that
are fix Q. Recall that the set H has by Proposition the cardinality n.
Throughout this subsection we write 7 for elements of H. If 7 € H, we write T
for the complex conjugate of 7, which is again a field homomorphism. We write
for r the number of totally real embeddings 7 € H and for 2s the number of
complex embeddings (see below for a more precise discussion). The aim of this
section is to prove the following theorem, which will turn out to be essential in
the proof of the finiteness of the class number.

Theorem 4.1. Let a be a nonzero ideal of O . Let ¢, > 0 for 7 € H be a
collection of real numbers with ¢, = ¢+ such that

TchT > (i)s V]dk|(Ok : a).

Then there is a nonzero element a € a with
|Tal < cr
forallT € H.

This statements resembles Minkowski’s Lattice Theorem, which was proved
in section 2.1, in the following way: We are given a certain discrete set and want
to conclude that any large enough set intersects the discrete set non-trivially.
The strategy of proof for Theorem [£.1]is to exploit this yet vague connection.
More precisely, we aim at associating to each number field K, a euclidean real
vector space Ky in a way such that we can associate to ideals of O lattices in
that vector space Kr. After having constructed this connection between ideals
and lattices, Theorem follows by applying Minkowski’s Lattice Theorem.

In pursuit of the above outlined strategy we first consider the complex vector

space
Ke=]]c

together with the hermitian scalar product

((zr), (yr)) = Z TrYr-

TEH

Furthermore denote
j: K — K, a+— (Ta)ren

and
F: Kc — K, (:]ST) — (T?).,.GH.
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Note that

<F(-TT)7F(yT)) = Z TrYr = <($‘r>7 (y7)>

TeEH

The vector space we are interested in is
Kg = {(z) € K¢ : F(z;) = (2,)},

i.e. the vector space of F-invariant elements. On Kpg the hermitian scalar
product restricts to a real scalar product since

((z7), (y7)) = (F(27), Fyr)) = ((z-), (yr))

for any (z,), (y-) € Kr. Thus Kg together with (-,-) forms a euclidean vector
space.

In the following want to find an isomorphism between Kx and R™ in order
to make volume calculations in Ky simpler. We proceed by decomposing the set
H into a real and complex part. We write

R={p1,....,pr} CH
for the homomorphisms p € H with p(K) C R and note that the complement
H\R ={01,71,...,05,05}
consists of pairs of field homomorphisms. Denote by
C={o1,...,05}

and by
C={o1,...,0}.

So we decomposed -
H=RUCUC,

where |R| =r and |C] = |C| = s.
Finally consider on R” = R"*2% the scalar product

(x,y) =Y orarys,
-
where a; = 1 if 7 € R is field homomorphism with image in R and o, = 2 if
T € H\R. We then have the following isomorphism.
Proposition 4.2. The map between the two euclidean vector spaces
f:Kp — R'=R""  (z)— (z,),

where x, =z, if p € R and z, = Re(2,), 25 = Im(z,) if o € C, is an isometric
isomorphism of vector spaces.

Proof. 1t is clear that f is a vector space homomorphism. To see that f is
injective choose, recall Ky consists of elements with Z#= = z,. Surjectivity of f
follows from the same reason.
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To prove that f is isometric, choose elements z = (z,;) = (z, + iy,) and
z' = (2L) = (¢/. + iy.) and note that

’/ /

Zpr .%pfﬂp

if p € R and for o € C' we have that
2070 + 257 = 2o 2y + Zozh = 2Re(2,7)) = 2(wo 2l + Yoy
Thus implies

(), () = 3 =%,

TEH

= Z 207, + Z (267 + z57%)

pPER oceC

= Z Ty, + Z 2(xozl + Youl)

pER oceC

= (f(z7), f(27)).

The next proposition finally relates ideals of Ok and lattices of Kg.

Proposition 4.3. Let a be a nonzero ideal of Or. Then I' = ja is a lattice in

Kr with volume
vol(T") = \/|dk |(Ok : a).

Proof. The ideal a can be viewed as a finitely generated Op-module. This
implies by Theorem that there is an integral basis aq, ..., a, of a over Z.
Then

I'=Zjo1+ ...+ Zjay,

is a lattice in Kj. Choose next an enumeration 74, ..., 7, of the elements in H
and denote A = (7;;). Then we have

d(a) = d(aq, ..., o) = det(A)?
and by Proposition [[.46
d(a) = (Ok : 0)%d(Ok) = (Ok : a)dk.
Furthermore

((Jau, jar)) = (Zﬁ%’ﬁ%) — AA".
=1

This implies

vol(T") = | det(A)| = /]dx|(Ox : a).

We are now ready to prove Theorem
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Proof. (of Theorem Denote by
X ={(2;) € Kgr : |z:| < ¢, forall T € H}

and note that the set is centrally symmetric. Since the map f from Proposition4.2
is an isometric isomorphism of vector spaces we have that f(X) is also centrally
symmetric and
vol(X) = vol(f(X)).
Observe
F(X) ={(z,) : |z,| <c, for p€ R and 22 + 22 < |c,| for o € C}.
For s = |C| we have that
VOI(S) = 2SVOlLebesgue(S)
for any set S C R™. Thus
vol(X) = vol(f(X))

=2° H 2¢, H w2

pPER oceC

— 9stras H c,

TEH
2 S
> 257 s <7r> V0dk|(Ok : a) = 2"vol(T),

where we used the assumption and Proposition [4.3|in the last line. Thus we
conclude by Minkowski’s Lattice Theorem that there is some nonzero element
a € X with a € T = ja, so |Ta| < ¢ O

Corollary 4.4. Let a be a nonzero ideal in O . Then there is some nonzero
element a € a such that

INixg)(a)] < (i) V0dk|(Ok - a).

Proof. For all € > 0 we can choose coefficients ¢, > 0 for each 7 € H and with
¢, = ¢+ such that

2 S
H Cr = () Vi |dK|(OK : U.) +e.
TEH g

Thus there is by Theorem a nonzero element a € a such that

2 S
W@l = ] fral < [ e = (2) Vidwl(©xcs0) +
T€H TEH
Since N(x.q)(a) is an integer and the term (%)5 VIdk|(Ok : a) is irrational, we

derive the existence of some a € a such that

Nuco@| < (2) VIrIOx )
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4.2 Finiteness of the Class Number

As in the last section denote by K a number field and by O the ring of integers
of K. Denote as in section 1.4 by Jg the abelian group of fractional ideals, i.e.
non-zero finitely generated Ok modules of K, and by Pk the set of principle
fractional ideals. The class group of K is defined as

Cly = Jx /Py

and the class number is the order of Clg. We state next the main theorem of
this subsection.

Theorem 4.5. The class number of any number field is finite.

In order to prove the theorem we introduce the norm of an nonzero ideal a
of O, which is defined as
N(a) = (Ok : a).

We first prove two statements about the norm.

Lemma 4.6. For any o € Og we have that

N((@) = [Nix)(@)]

Proof. Let a € Ok and consider the image of the Z-linear map
Ty : Og — Ok, T = ax,

which is a Z-submodule of Ok. By the elementary divisors theorem (see [Lan02]
Chapter III Theorem 7.8) there exists an integral basis wy,...,w, of O and
elements a1,...,q, € Z such that ajws,...,a,w, form a Z-basis of Im(T,).
The diagonal matrix diag(ay,...,a,) is hence the representation matrix of T,
with respect to the basis y1,...,y,. Thus we have that

|coker(Tp)| = |Z/arZ x ... X Z)a,Z| = ay - ... a, = det(diag(ay, ..., a,)).

So we conclude
N((@)) = [coker(Ta)| = |N(x.q)(a)]-
O

Proposition 4.7. Let a be a nonzero ideal of O with the decomposition into
prime ideals

a=pyt...pr.
Then
N(a) = N(ag) ... N(a,)"".

Proof. By the Chinese remainder theorem we have

Ok/a=0r/p* ®...® Ok /prr
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and thus it suffices to assume without loss of generality a = p¥. We consider the
chain
pop?D...Dp”

and note that p® 2 p**! since the decomposition into prime ideals is unique.
Next note that the quotient p?/pi*! can be given the structure of an vector space
over O /p by defining the scalar multiplication for a + pi*t € p?/pi*! and for
k+pe OK/]J by
(a+p™)(k+p) = ak +p™".

We furthermore claim that p?/p*™! has dimension 1 over Ok /p. To see this
choose some element a € p*\p*! and consider the ideal b = (a) + p**!. The
chain p*! C b C p’ implies that p = p~*p**! C p~ib. Since the ideal p is prime
and hence maximal since Ok is a Dedekind ring we conclude that p~b = Ok.
This implies that p’ = b because the inverse of elements in a group is unique
and all these ideals form elements of the ideal calls group Jg.

Hence we have an isomorphism of vector spaces p’/p**! = Ok /a. This shows

NP”) = (O :p)(p:p?) ... (07" p”) =N(p)".
O

Proof. (of Theorem The proof comprises two steps. We first show that there
are only finitely many integral ideals a with

N(a) < M,

for any fixed constant M. To see this consider a prime ideal p and note that
Z Ny = pZ for a prime number p. As the field Ok /p is finite, we have that
Ok /p is a finite field extension, let us say of degree f, of Z/pZ. Hence

N(p) =p.

Since (p) C p, there are only finitely many prime ideals with norm of the form
p! for f some integer. This implies there are only finitely many prime ideals
with norm less than M. By using the unique decomposition into prime ideals of
any integral ideal a and Proposition we conclude that there are only finitely
many ideals in Ok of norm less that M.

Second we show that for any ideal class [a] € Clk there is an integral ideal
a; € [a] with

Moy < (2) Vidad

implying the theorem by the first step. To see this, choose some + such that
b :=va C Ok is an ideal in Ok. By Corollary [£.4] there is some element 3 € b

such that ~N
INr:0)(B)] < (ﬂ) V]dk|(Ok : b).

Hence by Lemma

[N (B)191(6™1) = N(Bo~) < (i) ldx|.
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It in general difficult to determine the class number of number fields and
many open questions are there yet to be answered. For example it is an open
question whether there is an infinite number of quadratic number fields of class
number 1. We give here a list of positive integers d such that Q(d) has class
number 1, which can be found in [Neu07]:

2,3,5,6,7,11,13,14,17,19, 21, 22, 23,29, 31, 33, 37, 38,41, 43, 46,47, 53,
57,59,61,62,67,69,71,73,77,83,86,89,93,94,97, ...
At first glance, one might guess that for every prime number p the class number
of Q(,/p) is 1. However, for example the prime number 79 does not satisfy this
property.

4.3 Dirichlet’s Unit Theorem

As before we denote by K a number field of degree n and by O the ring of
integers of K. Furthermore, as in section 2.1, the group of field homomorphisms
H = Homg(K,C) decomposes into r real field homomorphisms and 2s complex
field homomorphisms.

The object of investigation in this subsection is the subgroup of units O of
the ring of integers Ok . We first observe the following.

Lemma 4.8. The units O}, are precisely the elements of Ok of norm =£1.

Proof. Assume z € O} is a unit. Then we have that

1= Nxo)(1) = Ngglzz™") = Nxo) (@) Nig) ().

Since Nk g)(2), N(k,g) (¢~ ") € Z we conclude that N(z) = +1.
Conversely if Nk g)(x) = £1 for x € Ok, then the minimal polynomial of =
is of the form
2" +az" P+ tapxt1=0

for ay,...,a,_1 € Z. Thus we have that
r(z" a4 dan1) = Fl
and hence x € Oj. O

Throughout this subsection we denote
p(K) := {roots of unity in K} C OF.
We aim at proving Dirichlet’s Unit Theorem.

Theorem 4.9. (Dirichlet’s Unit Theorem) The subgroup of units O% of Ok is
the direct product of the subgroup p(K) consisting of the roots of unity and a
free abelian group of rank (r + s —1).

To prove the theorem, we study a similar setting as in section 3.1. However,
we are interested in K* instead of K. So we consider

Ke=]]

TEH
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together with the two maps
j: K" — K¢, x+— (TT)ren
and the product of the coordinates

P:K:—C*  (wr)rem— | 2

reH
We then have the following commutative diagram:
K — K
JNU(,@) JP
Q* — C*
We furthermore consider the logarithm
log: C* — R, x — log ||

and the map
1KE— [[ R (@)ren — (loglar|)ren
TEH
By defining the sum of the coordinates
S:HR—)R, (xr)reH'—>Z$r
TeEH TeEH

we arrive at the commutative diagram:

K* = K¢ = [[en R

b b

Q* C* log R

As in section 3.1, we define
F: Ki — K¢, () — (T7).

We write by K5 the set of F-invariant elements of K¢ and by [HTG I R] * the set
of F-invariant elements of [] . R. We then arrive at the following commutative
diagram:

K — K 5 Loy R

b b

Q* R* log R

R]

Lastly denote
+

S:={ye Ky : Ply) = +1}, H=(z¢€ : S(z)=0

IR

T€H

and write
A=loj: 0 — H, I'=\0%).
The heart of Theorem [£.9]is the next proposition.
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Proposition 4.10. The subgroup I" is a lattice in the (r + s — 1)-dimensional
vector space H. Hence T is a free abelian group of rank (r + s —1).

We the help of Proposition we deduce Theorem
Proof. (of Theorem We first claim that we have a short exact sequence

1— u(K) -5 0 25T — 0,

where we denote by i : u(K) — O the inclusion. It is clear that ¢ is injective
and A is surjective. So it remains to show that Im() = ker(A).

If ¢ € Tm(i), then we have that 7¢ is again a root of unity and hence A(¢) =
(log(|7¢]))rerr = (0)rcp- This shows ¢ € ker(\). Conversely, if ¢ € ker()\), then
|7¢| =1 for all 7 € H. Note that by Proposition the subgroup jOk is a
lattice in Kg. For this reason, the set j(ker())) is a bounded and hence finite
subset of jOk. As j is injective, this implies that ker(\) is a finite subgroup of
O} and hence consists of roots of unity.

To conclude the proof we use Proposition to see that I' is a finitely
generated abelian group. So let v1,...,7%4s—1 € I' be a set of generators and
denote by v1,...,v,45—1 a set of preimages under A of vq,...,7,4s-1 in OF. By
mapping v; — v;, we see that the above sequence splits and hence

O% = pu(K) x T
O

It remains to prove Proposition Recall that elements a and b of a ring
are called associated if alb and bla.

Lemma 4.11. Up to associating elements, there are only finitely many elements
a € Ok with fized norm Nk q) = a.

Proof. Let a € Z with a > 1. We claim that in any of the finitely many cosets of
Ok /aOk there is up to associating elements at most one element a such that
IN(k.@)(a)| = a. If in fact 8 = a + a7y € Ok another such element recall that
N(k.q)(B) € Ok as it is a product of integral elements and

Nko® =[] 7B €Ok

T€Hom(K,Q)

as the embedding K — Q is one possibility. This shows

N (k.
() (B) € Ox
g
a a (K:Q) (5)
S =l-hy=1% €0
3 5’7 3 v K
and analogously
N k.
é 1+ (K'Q)(a)’}/ € Ok.
@ @

So « and B are associated. O
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Proof. (of Proposition [4.10) We first show that I' is discrete in H. To see this,
it suffices to show that for any ¢ > 0 the bounded domain

{(mT) e[IR: Jar| < c}

only contains finitely many points of I' = [(j(O};). Note that the preimage under
[ of this bounded domain is

{(zT) € H(C* e <z < ec}.

Note that this set only contains finitely many elements of j(O}) as j(O3F) is a
lattice in J[ C*.

We next show that I' generates to whole vector space H. To see this, it
suffices to find some bounded set M C H such that

H=|J(M+~).
yel’

In order to construct such a set, we will consider its preimage under the surjective
homomorphism j : S — H. More explicitly we will construct a bounded set
T C S such that

S = U Tje.

e€O%

We then note that as 7" is bounded and for any x = x, € T' we have [[_|z,| =1
we have that the absolute values of |z.| are bounded from above and below.
This then shows that the set M = [(T) is bounded.

We choose real numbers ¢, > 0, 7 € Hom (K, C) with ¢, = ¢z and with

Czl:[C-,—> (i)zm

and consider the set
X ={(2r) € Kg : |z:| <cr}.
Then we have for a general point y = (y,) € S, that
Xy={(z) € Kg : |z.| <.}

with ¢ = c;lyr| and ¢ = ¢} and [[. ¢, =[], ¢r = C as [[, |ly-| = [N(y)| = 1.
By Theorem [4.1] we hence have a non-zero element a € O such that

ja = (ta) € Xy.

Using Lemma [£.11] we can find a system aq,...,ay € Ok with a; # 0 such
that every a € Ok with a # 0 and [N(k.q)(a)| < C is associated to one of those
elements. Then we consider the set

N
T=5nJX(ja:)™"

i=1
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and claim that the properties we aimed at. To see this first note that as X is
bounded we also have that X (jo;)~! is also bounded and hence also T
It remains to show
S = U Tje.
e€O%
Let y € S. Then there is by the above some a € O with a # 0 and ja € Xy~!
so ja = xy~', x € X. Furthermore, as

Ny (@) = [N(xy ™) = IN(@)| < [[e- =C

we have that a is associated to some a;. So there is ¢ € OF with a; = ca. It
follows
1

y=2xja = a:j(a;le).

Then as y, je € S we have xjai_l esSn XjOzi_l C T we also have y € T'je. 0O

We next want to determine the volume of the lattice I' = A(O%;) of H. In
order to achieve this we associate [[]. R|* = R""* and hence H becomes by this
identification a subspace of R"**. Furthermore let 1, ...,&,45_1 be fundamental
units of Ok, i.e. units that generate the free part of Og. Then the lattice I is
spanned by A(e1),...,A(e:) € H. Note that the vector

1
VT + s

is obviously orthogonal to H and has length 1. Thus the volume of the lattice '
is equal to the parallelepiped spanned by Ao, A(€1), ..., A(&r4s—1) in RIF! and
hence given by the absolute value of the determinant spanned by the matrix
given by those vectors. In formulas,

Ao,1 Arler) oo A(Ergs—1)

Ao

(1,1,...,1) e R"*

vol(A(O%)) = £ det : : . :
>\O,r+s )\r+s (51) e )\r+s (5r+s—1)

In this setting, we define the regulator of the number field K as

Reg(K) = vol(A(O%)).

1
VrEs
4.4 Orders and the Picard Group

Throughout this subsection we denote by K a number field of order n and Ok
its ring of integers.

Definition 4.12. A order of K is a subring O of Ok that has an integral basis
of length n. The ring Ok is called the maximal order of K.

Example 4.13. For example
O =7+ 7ZV5 c Q(V5)

is an order. More generally if aq,...,q, are integral numbers with K =
Q(ag,...,ap) then O = Z[as,...,a,] is an order and any order is of this
from.
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Another later useful example of an order is given by the next proposition.

Proposition 4.14. Let ay,...,a, be a basis of K over Q and let a = Zay +
..+ Zay,. Then
Os={ €K : daCa}

s an order.

Proof. 1t is clear that O, forms a ring. Let A € O, we want to show that A € Ok.
To see this, denote by A the representation matrix of the A-multiplication map
on K with respect to the basis ay, ..., a, and note that A has integer entries.
Thus the characteristic polynomial ¢ of A is a monic polynomial with integer
coefficients and by Cayley-Hamilton ¢(A) = 0. Thus ¢(A) = 0. Furthermore
as O, is a submodule of the free module Ok and as the Q-span of O, is K we
conclude that O, is a free Z-module of rank n. O

Theorem 4.15. An order O of K is a one-dimensional noetherian integral
domain.

Proof. As O is a finitely generated Z-module of rank n = [K : Q], we have that
every ideal a is a finitely generated Z-module and hence also a finitely generated
O-module. Thus O is noetherian. If p # 0 is a prime ideal and a € p N Z with
a # 0, then a0 C p C O and so p and O have the same rank as a Z-module.
Thus O/p is a finite integral domain and thus it is a field and so p is a maximal
ideal. O

Note that an order O does not have to be a Dedekind ring as it might not
be normal. Hence the set of fractional ideals might not be a group. Hence we
restrict to invertible fractional ideal: For an order O we denote by J(O) the set
of invertible fractional ideals, i.e. the non-zero finitely generated O-submodules
of K such that there is a fractional ideal b with

ab = 0.

The set J(O) obviously forms an abelian group and for any element a C O the
inverse is given by
al={reK:zac0O}

We furthermore denote by P(O) the set of principal fractional ideals. Then the
factor group

Pic(0) = J(0)/P(0)

is called the Picard group of O.
Recall that for an integral domain R and a multiplicative subset S C R\{0}
we define the localization of S as

SR = {g € Quot(K) : r€ Rand s € S}.
We furthermore write for p a prime ideal of R the localization at R\p as
Ry = (R\p)~'R.

We can moreover prove an analogue of Dirichlet’s Unit Theorem for the order
0.
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Theorem 4.16. (Dirichlet’s Unit Theorem of Orders) Let O be an order in
an algebraic number field K. The group O* of units is the direct product of
the subgroup p(K) consisting of roots of unity and a free abelian group of rank
(r4+s—1).

Proof. For a proof see [Neu07] Theorem 12.12 of section 1. We furthermore give
in section 8 a proof based on algebraic groups for the case K = Q((¢) for ¢ an
algebraic number. O

4.5 Orders and Periodic Orbits

The aim of this subsection is to relate to algebraic information in totally real
number fields to interesting periodic orbits for the diagonal subgroup in the
space of lattices up to scaling

X4 = PGL4(Z)\PGL4(R).
We first discuss the term periodic orbit. Denote

ai

a2
A= . S PGLd(R) < PGLd(R)

aqd

the diagonal subgroup. A point x € X, is called periodic for the diagonal action
on X, if there exists a finite A-invariant measure on

x.AC Xy

If  is an A-periodic point, then the set z.A is called the a periodic orbit.

It will turn out to be useful to decompose A into a part with a positive
determinant representative and a part with a negative representative. So denote
by AT the subgroup diagonal matrices in A which have a representative of positive
determinant and by A~ diagonal matrices in A which have a representative of
negative determinant. Note that if d is odd, then AT = A~. If d is even then
At = A™M for M = diag(-1,1,...,1f]

Let K be a totally real number field of degree d and denote by 71, ..., 74 the
real embeddings K — R and by 7 the Q—linear map

7: K - R, ke (r(k),...,7a(k)).

First, we want to associate to each fractional ideal a a periodic orbit. Consider
the lattice
Ly={r(a) : a € a}

and let z, € Xy be the element of X, that corresponds to L.
Recall that by Theorem the fractional ideal a is a free Z module of rank
d that satisfies
O C{A€K : AaCal.

1In dimension 2, multiplication of a lattice by M corresponds to mirroring the lattice at
the y-axis. This obviously generalizes to higher dimensions.
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By Proposition the latter set is an order in K, hence

Ok ={N€ K : AaCal. (4.1)
If a1,...,a4 is an integral basis of a then L, can we written in terms of the
integral basis as follows:
7(ay) T1(ar) m2(a1) ... 7alar)
4| m(a2) .| 1a2)  72(a2) 7a(az)
La =7 . =7 .
7(aq) T1(aq) T2(aq) ... Talaq)
Recall ,
m(a1) T(ar) 7a(az)
Ti(az) T2(a2) Ta(az)
d(a) = det )
T1 (ad) T2 (ad) N Td(ad)

and hence L, is indeed a lattice as the discriminant is non-zero.
Lemma 4.17. The point x4, € X4 is A-periodic.

Before proving the lemma, we proceed with a short digression. Fix an integral
basis ay,...,aq of a. Then aq,...,aq is a basis of K over Q. Let A € K and
consider the multiplication map

my: K — K, k— kM.

We denote by M)y € M4(Q) the representation matrix m, with respect to the
basis a1, ...,aq. Then by (4.1) we have

M, EMd(Z) < )\EOK

and
My e GL4(Z) <— M€ Of.

Proof. (of Lemma [4.17)) Let ¢ € Oj be a unit. As multiplication by ¢ is
represented by an element of GL4(Z) we conclude

7'1(6)

m2(€)
Tq = Tq -

7a(e)

as an equation in Xy .

Denote by €1,...,e4—1 € O} a system of fundamental units of OF. If
necessary, we replace g; by €2 in order to arrive at a unit of norm 1. Write
t; = diag(m1(g;),...,7a(gi)) € AT and so x4 = x4.t; for i = 1,...,d — 1. By
Dirichlet’s Unit Theorem the 7(g1), ... 7T(e4—1) span a lattice and are thus linearly
independent.

This allows us to endow the At-orbit z,.AT C X, with an At-invariant
probability measure as follows: Note that the canonical surjection

AT &z AT, ar— z.a
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has a kernel that contains the Z* !-span of ti,...,tq_1. Denote by A this
7% 1_span and note that this is a lattice in A. Thus the map factors through a
surjection

AT /A — 2. AT

By pushing forward the finite A*-invariant measure on AT /A we arrive at a
At-invariant measure on z.AT. In order to get an A invariant measure on
the entire orbit z4.A4 just use the matrix M with A~ = ATM and the above
At-invariant measure on x.A™" to define such a measure. O

In fact, the surjection
AT /A — 2. AT

from the above proof is indeed a bijection. To see this assume without loss of
generality that 7, = id. Assume that a = diag(Aq,...,A\q) € AT has determinant
1 and satisfies x4 = x4.a. Then multiplication by A; is represented by an integer
matrix and so A\; € Ok. Moreover, 7;(A1) = A; fori =1,...,d and so N(\;) = 1.
So A1 € OF and hence it is contained in A.

Lemma 4.18. Let a and b be fractional ideals. Then [a] = [b] if and only if
Tq.A=xp.A.

Proof. Assume that b = Aa for A € K*. If ay,...,a, is an integral basis of a,
then Aaq,...,Aa, is one of b. Thus

7(Aay) 7(ay) 71(N)
7(Aaz) _ 7(az) 7o ()
Oay) T(an) Y

and hence for a = diag(m1(A),...,74(A\)) € A we have
Tp = Tq.Q,

or equivalently z,.A = zy.A.

For the converse assume there is a = (A1,...,Aq) € A so that zp = z4.a. We
furthermore assume without loss of generality that 73 = id. For the rest of this
proof, in order to arrive at actual equalities of matrices and not just equalities up
to homothety, we normalize all matrices to have determinant +1. In particular,

the matrix a has determinant 1. Let aq,...,aq be an integral basis of a and
by,...,bg one of b. Then we have that
T(bl) T(al) )\1
1 7(b2) 1 7(az2) Az
d(b)=a Cd(a)z |
7(bn) T(an) Ad
and so
T(bl) T(al) )\1
7(b2) 7(a2) | d(b)za A2
| d(a)m

7(bn) (an) | Y
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Set
d
IRVZON
d(a)
and so as 71 = id we conclude that b; = Aa; for all i = 1,...,d or equivalently
A= b e K~
Q;
and so b = Aa and [b] = [a]. O

We next discuss generalizations to all of the above in two directions. First, we
can consider not only totally real number fields, but more generally any number
field of degree d. However, showing analogous results to before will rely upon
using the theory of algebraic groups as will be done in section Second, we
can consider a much wider class of ideals. Fix an order O in K. The ideals we
are interested in are so called proper O-ideals a, i.e. free Z-modules of rank d
that satisfy

O={AeK : laCa}.

In fact, if a is a proper O-ideal, by definition we have a normalized integral
basis aq,...,aq of a. Then the same construction as before leads to an element
zq € X. Analogously to Lemma[4.17] z, is periodic and the only difference in
the proof is that one uses the fundamental units of O instead of the ones of Ok.

We furthermore, want to generalize Lemma [£.18] Using the same proof we
can show for a given proper O-ideal a and a proper (O’-ideal b that the periodic
orbits 4.4 and xp.A are the same if and only if a and b are equivalent, i.e. there
exists some A € K* so that

b= Aa. (4.2)

Note that if (4.2) holds then
O'={peK : pwp=by={peK :pa=Xda}={pe K : pa=a}=0.
So we arrive at a generalization of Lemma[£.18] which forms the next proposition.

Proposition 4.19. Let O and O’ be two orders in K and consider a a proper
O-ideal and b be a proper O’ -ideal. Then v4.A = xy.A if and only if there is
A€ K* so that b = Aa and hence O = 0.

Proof. The proof together with the discussion above is almost verbatim to the
one of Lemma [4.1§] O

4.6 Duke’s Theorem and the Height of Lattices

This subsection is a continuation of the last one in special case d = 2 and so

and K = Q(\/E) for d a positive non-square integer. This setting allows a
particularly beautiful interpretation of the periodic orbit z4.A, which is based
on hyperbolic geometry. Denote by H the upper half plane together with the
hyperbolic metric. Recall that we can view PSLy(R) = SLy(R)/{x£Id2} as the
unit tangent bundle of H. This property is preserved by considering quotients
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of the upper half plane by discrete subgroups of PSLs(R). Thus we can view
PSL2(Z)\PSLy(R) as the unit tangent bundle of the modular surface PSLo(Z)\H.
Even more remarkable is that the action of the one-dimensional diagonal
group A (now viewed as a subgroup of PSLy(R)) on H is the geodesic flow.
Thus an A-periodic orbit on SLg(Z)\SL2(R) is a closed geodesic on the modular
surface.
We denote
d+Vd

O4:=7 5

and throughout this subsection we assume that d = 0,1 mod 4. Then Oy C Ok
is an order in K.
To picture a concrete example, consider simply a = O4 and then

1 1
To, = (d+\/3 d—\/&) S PGLQ(Z)\PGLz(R)
2 2

Figure 1: Closed geodesics associated to Oy in the cases d = 18,19, 30

We want to consider all orbits associated to all possible proper O4-ideals.
In this concrete setting it turns out that the notion of proper Oy4-ideal and
invertible fractional O4-ideal coincide.

Proposition 4.20. Let a C K be a fractional Og4-ideal. Then a is invertible
if and only if a is a proper Og4-ideal, i.e. a is a free Z-module of rank 2 which
satisfies

Og={N€a:aCal.

Proof. See [ELMV12] Section 2.2. O

Thus
{a C K proper Oy-ideal}/K* = Pic(Oy).

Let G4 be the collection of all periodic orbits associated to all proper Og-ideals,

ie.
Gq = U Tq A= U Tq.A.

a€Pic(Oq) a proper Ok-ideal
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This is collection is finite, as the Picard group is finite. By averaging all the
periodic orbit probability measures, the collection G4 posses the A-invariant
probability measure

1
PR
IPic(Oa)l cpido,)
which is supported on G; C X.
Denote by px the Haar measure on X. In this setting it is natural to ask,
whether the set Gy equidistributes, i.e. whether for any f € C.(X) it holds that

[ @ duate) [ 1ia)dux(a)

as d — oo. The affirmative answer is given by Duke’s Theorem.

Theorem 4.21. (Duke’s Theorem, Theorem 1.3 of [ELMVIZ]) As d — o
among the non-square discriminants, the set Gy equidistributes.

The proof of Duke’s Theorem [ELMV12] combines methods from number
theory and ergodic theory. As a first step towards the proof of Duke’s Theorem,
one needs to show that not too much of the collection G, is high up in the cusp,
picturing the collection of orbits on the modular surface as in Figure [I} To
capture this, we introduce the height of lattices.

We define the height of a lattice L = Z2g for g € GLy(R) as

ht(L) = (mn\{}lmll> _ (mmmezz\m} ||xg||)—1
vol(L)* vol(L)2 )

Observe that ht(L) only depends on the homothety class of L.
We can relate the height of a unimodular lattice to a geometric quantity on
the modular surface, as stated in the next lemma. Let
S={zeH: -1 <Im(z) <

1 and |z| > 1}

be the fundamental domain (see Section 11 of [EW11]) for SLy(Z)\H.

Lemma 4.22. Let x € SLy(Z)\SL2(R) and assume z = (z,v) € T*(SLa(Z)\H)
for z € S. Then
Im(z) = ht(z)%

Proof. We can choose g = (%) € SLy(R) with = I'g such that g.i € S, i.e.
[Re(g.i)| < § and |g.i| > 1. As

ai+b ai+bd—ci ac+bd . 1

ci+d ci+dd—ci 2+ d2 +202+d2

g.i=

the assumption |Re(g.i)| < 3 translates to

ac + bd

Re()l =

IN

1
5"
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Moreover we can assume upon multiplying g by ( 01 _01) and thus replacing
g=(24) by g=(°7,") that

A +d? <a®+ b
Set L = Z*g. Then

ht(x)™2 = ht(L)"2 = i 2
(@) =h(L) = win |mn)g]

= min ma + ne)? + (mb + nd)?
(m,n)ez?\{0} (( ) ( ) )

= (m,n])qéizg\{o} (m?(a® +b) +n?(c® + d*) + 2mn(ac + bd))

Thus we have that

Im(g.7) min ( sa% + b?

ht(z)2  (mn)ez2\{0}

9 ac+bd\
m62+d2+n +2mnm —1

Let H > 1 and denote
XZH = {LE eX: ht($) > H}

Proposition 4.23. Let a C Oy be a proper Og4-ideal. Then xq. AN X>p is
nonempty if and only if a=! is in the same ideal class as an ideal b C O4 of
norm < %H’le/z.

Proof. We first observe the following. If we identify z € X with the unimodular
lattice L, we claim that £.A N X>p is nonempty if and only if there is some
nonzero vector

1
(u,v) € L with |uv| < §H_2. (4.3)

This observation follows from calculating the minimal norm achieved under
the A-action for an element 0 # (u,v) € L. So consider the continuously on ¢

dependent function
et/? 0
(U,U) : < 0 e—f,/2

ulel — v2et.

2
=u’et + 1)2671‘/,

2 ’

H(u71})~at

which has derivative

The derivative is zero if and only if (assuming w.lo.g. u # 0) ¢t = log (|2]).
Hence the minimum of the function ||(u,v) - a¢||? is |2uv].

Using this, assume we have (u,v) € L = Z?z with |uv| < 1H~2. Then, as
above, there is some ty so that

=+/|2uv| < H™!

implying ht(L.as, )~ < H~! and so ht(L.as,) > H.

H(uav) * Qg
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For the converse assume that for some to, ht(L.ay,) > H or equivalently
ht(L.as,) "t < H~!. Then there is (u,v) € L such that

V2wl < ||(u,v) - ar,

<H,

implying the claim.
Now let a be a proper Oy4-ideal with integral basis aq,as. Then

det (al :EZ;D = /d(a) = (04 : 0)/d(O4) = N(a)d?.

ag

In the following we want to normalize z4 to arrive at an element with determinant

+1. So we get
1 a1 7(ay)
To= 1 \ay T(ag)
N(a)dz \? 2

and the lattice L = Z2xz, given by z, is
L =({ ———(na1 + mag,7(na; + may)) : n,m €%

So the above condition translates to the following conclusion: z4.A4 intersects
X>p if and only if a contains an element A so that

N < 1H—QN a)d/?.
2

Furthermore N(a™') = N(a)~'. So 4.4 intersects X> g if and only if N(Aa™!) <
1 H=2d%/? for some A € a so that Aa™! C O,. O

Corollary 4.24. There is an bijectiorﬂ between connected components of Gg N
X>u and ideal classes of proper Oq-ideals [a] with a representative a C Oq of
norm < %H’le/z.

Proof. The maps are given as follows. If z,,AN X>py # 0, then by the last
proposition the ideal class [a~!] has a representative of norm < 1d'/2H~2. So
the map z4.4 — [a71] is well defined. For the same reason the map [b] with
such a representative mapping to z,-1.A is well defined. These two maps are
inverse to each other as Pic(O,) is a group and so in particular (a=1)"! =a. O

Towards the proof of Duke’s Theorem [? ], we will need to show that for all
e >0,
,ud(Xst) —0
as d — oo. In fact, a special case of the next proposition (in the case H = d¢)
shows that
ud(des) <. d°.

Proposition 4.25. For alle > 0 and H > 1 we have

Nd(XZH) <Le d*H2.

2In fact we consider the set of connected components of G4 N X>p up to identifying the
AT and the A~ part.
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Proof. For any orbit in G; the maximal height achieved is < di as there is
no ideal of norm less than 1. We show next that for H > 1 any connected
component of G;N X >y has length 3log(d). Indeed, such a connected component
corresponds to the segment of some oriented geodesic circle whose points have
imaginary part between H? and dz. More precisely, we want to bound the length
of the geodesic segment between two points z; = (z1, H?) and 2y = (29, H?) in
H, where we choose x1 and x5 such that the geodesic arc connecting z; and zo
stays below dz. This then shows that |z1 — 25| < 2d'/? by Pythagoras. Thus,
using the hyperbolic distance formula

<\/(x2 — @)’ + /(s —@1)? +4H4>

202
2d1/% + 21/2d1/?
- 2H?

+f 5)

g(1+f) +2log(d/?) — In(H?)
(1—1—\[) +210g(d1/2)
og(d)

for d > 3 and hence for all d as we only consider non-square discriminants.
Together with Corollary

length(Ga N X>pm) < 3log(d)N<p(d)

for N<p(d) being the number of proper ideals a C Oy of norm N(a) < %H‘2d%.
Recall that for any n € N the number of proper ideals in O, of norm equal to n
can be bounded by the squaring number of divisors of n and so by <. n®. By
summing over all 1 < n < %H*2dl/2 we conclude

—241/2(Z =2 41/2)¢ —2 71/2\1+¢
Neg(d) < Y n<<82 d (2 dV?)° < (H2d"/?)1+e,

1<n<iH-241/2
So we see that
length(Gy N Xs ) <. log(d)(H2d? )"+,
As log(d) is dominated by dz and as H~2(0+9) < H=2 we get
length(Gy N X>p) <. H2dz0+).
Moreover, a straightforward consequence of Dirichlet’s Class Number formula is

length(Ga) = |d|# o).

This implies
length(Gy N X>p)

length(Gy)

pa(Xsm) = <. H2d.
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5 Binary Quadratic Forms

5.1 The Narrow Class Group

Let K be a number field. Recall that the ideal class group Ik is given by the
abelian group of fractional ideals. We denote as usual by Px the subgroup of
principal fractional ideals and the quotient group

Cly = Ix/Px

is the class group of K and its cardinality the class number. We then define the
positive subgroup of Pk, given by

Pyt = {principal fractional ideals () with o(a) > 0 for all embeddings o : K — R}.
The narrow class group is subsequently defined as the quotient
Cly; = Jk /Pt

Moreover, we refer by the term narrow class number the cardinality of CZ}.

For example, if K is a totally imaginary number field then there are no real
embeddings K — R and so P;} = Px and the narrow class group coincides with
the standard class group. We won’t calculate the narrow class numbers for real
quadratic fields here, instead we just give a list of positive integers d such that
the narrow class number is 1:

2,5,13,17,29, 37,41, 53,61, 73,89, 97, . ..

5.2 Binary Quadratic Forms and Number Fields

Definition 5.1. A binary (integral) quadratic form is a polynomial
Q(X,Y) =aX?+bXY +cY?

with a,b,c € Z. Moreover, we say that the quadratic form @ represents the
integer r € Z if there are integers m,n such that

r=Q(m,n).

so= (5 ). = ()

we note that @ is can be written with the help of Bg as

Be setting

Q(X,Y) = X"BoX.
The number
dg = b* — dac = —4 det(Bg)
is called the discriminant of Q. We furthermore call the quadratic form @

non-degenerate if dg # 0.

Lemma 5.2. An integer d is the discriminant of a quadratic form Q if and only
if
d=0,1 mod4
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Proof. Assume d is the discriminant of a quadratic form Q(X,Y) = aX? +
bXY + cY2. If 2|b, then we have that 4|d = b*> — 4ac. If 21 b, then

b=1,3 mod4

and so
> =1 mod 4

implying that
d=b>—4ac=1 mod 4.

Conversely assume that 4|d. The the quadratic form Q(X,Y) = X2~ %YQ has
discriminant d. If d = 4n+1 then the quadratic form Q(X,Y) = X2+ XY —nY?
provides an example of a quadratic form with discriminant d. O

We are interested to know which integers are represented by the quadratic

from Q. If
A= (3 ?) € M(Z)

is an integer matrix, we note that if understand the quadratic form @ then we
also understand the quadratic form

Q(X,Y) = Q(aX + Y,y X +6Y) = X"ATBoAX.

More precisely, an integer r is represented by @’ only if it is represented by Q.
We can reverse this process if A is an invertible integer matrix with inverse again
an integer matrix, which is equivalent to det(A4) = +1. All this motivates the
following definition.

Definition 5.3. Two quadratic forms @ and Q' are said to be equivalent if

there is some matrix 8
«o
A= (7 (5> € SLy(Z)

such that
Q'(X,Y) = Q(aX + Y, X +4Y).

Lemma 5.4. Equivalence of quadratic forms is and equivalence relation. More-
over, if Q and Q' are equivalent binary quadratic forms, then they represent the
same integers and have the same discriminant.

Proof. Let A be as in Definition [5.3] Then we have that
Bg = ATBgA
and so the equivalence of quadratic forms is an equivalence relation. Moreover
dg = —4det(Bp) = —4det (AT BgA) = —4det(Bg) det(A)* = dg,

as det(A) = 1. It remains, to show that if @ and Q' are equivalent binary
quadratic forms, then they represent the same integers. So let  be an integer
such that r = Q(m,n) with m,n € Z. Then we have

r= mTBQm:mITATBQAm/ _ m/T‘Ble/7
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e (m> ,m' = A" 'm.
n

So r is also represented by @Q’. The converse follows by symmetry of the

equivalence relation. O

where

It is not the case that any two quadratic forms with the same discriminant
are equivalent. However the main aim of this subsection is to show that there are
only finitely many equivalence classes of quadratic form for a fixed discriminant.

Denote by d a square-free integer write K = Q(v/d) and as usual denote
by Ok the ring of integers and by dx the discriminant of K. We want to
relate to this setting a quadratic form with discriminant dg. This is possible by
considering the so-called norm form qx defined by

ax(X,Y) = Ny (X + YVd) = (X + YVd)(X —YVd) = X? —dY?

ifd #1 mod 4 and by

1 1—
4k (X,Y) = Nx.q) <X+Y< +\/g>> =X?+ XY + <4d> y2

2

if d=1 mod 4. We note that in both cases the quadratic from gx has discrimi-
nant dg.
We first prove the following interesting relation.

Proposition 5.5. Let Q be a binary quadratic form with square-free discriminant
dq. If there is a number field K = Q(\/&) for d a square-free integer such that

dg = dg,
then Q is primitive, i.e. ged(a,b,c) = 1.

Proof. First assume that dx = dg =1 mod 4. If ged(a,b,c) # 1, then note
that dg = dg = b? — 4ac is not square-free, a contradiction to the assumption.

If dgk = dg # 1 mod 4, then we have that dg = 0 mod 4. This shows
dg = dg = 4d and d = 2,3 mod 4. So we see that ged(a, b, ¢) must divide 2
since otherwise we again have that d is not square-free (the case ged(a, b, ¢)|2
is possible as dg = b? — 4ac = 4d and d is assumed to be square free). Assume
next for a contradiction ged(a, b, ¢) = 2. So we have that

de (b’ ay reN (b
== (2) ~1(3)(3) = (2) mod 4.
But then d # 2,3 mod 4 as it a square mod 4, which can’t be. Thus
ged(a, b, c) = 1. O

An integer d which satisfies d = 0,1 mod 4 is called fundamental if d is
either square-free, in which case d = 1 mod 4, or % is a square-free integer
congruent to 2,3 mod 4. By the proof of the last proposition we see that a
discriminant d¢ is fundamental if and only if it is the discriminant of a quadratic

field. Moreover, any quadratic form with fundamental discriminant is primitive.
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In the following discussion we always assume that d is a fundamental integer.
Denote by

Raise(d) = {Q(X,Y) = aX? + bXY +¢Y? : a,b,c € Z and dg = d}
={Q(X,Y)=aX?*+bXY +cY? : a,b,c € Z,dg = d and gcd(a,b,c) = 1}
>~ {(a,b,c) € Z® : b* — 4ac = d and ged(a,b,c) = 1}.

We denote by
Q4 = SL2(Z)\ Raisc(d)

the set of equivalence classes of quadratic forms. We next state and prove the
main theorem of this section.

Theorem 5.6. Let d be a fundamental integer and denote K = Q(\/d). Then
there is a bijection between the narrow class group C’l;} of K and the set of
equivalence classes Qg of quadratic forms with discriminant d.

In the following we are going to construct the bijection, whose existence is
claimed in Theorem In order to achieve this we will need a few preliminarily
recollections and remarks.

Denote by o the non-trivial automorphism of K and let a C Ok be a
fractional integral ideal with integral basis a1, as. By Proposition we have

that )
ai a2 _ 2
(2 22)) =

We understand +/di always as the positive square root if dx > 0 and as the
square root with positive imaginary part if di < 0. We call the ordered basis
(a1, az2) of a normalized when

det (< a2 >) = N(a)y/dx.

ga1 0ag

Note that given a basis {a1, as} of a, exactly one of the ordered bases (a1, as) or
(a2, a1) will be normalized.
Given a normalized basis (a1, a2) of a we define the quadratic form

Q(al,ag)(Xv Y) = ‘ﬂ(a)*lN(K:Q)(alX -+ QQY)
=N(a) H(ar10a1X? + (ay0az + 0a102) XY + azoasY?).

To see that this quadratic form is indeed well-defined, first observe that for
any x,y € Z we have a1x + aoy € a. Furthermore, we note that if b € a, then

(b) C a and so by Lemma [4.6]
IN(x:0) ()] = N((0)) = (Ok = a)(a: (b)) = N(a)

implying
9M(a) | N(x.q) ()
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and so the quadratic form is well-defined. Furthermore we have that

1
dQ(al,a2) = W((alaag + oa1a2)? — 4a10a10a1a0)

= (ar0a2 — oa1a2)2

2
_ 1 ar  a _
= N(a)? det((oal a)) =

Next note the following. If we choose an alternative normalized basis (b1, ba)

of a we note that there is an invertible integral matrix A = (?; 6) with

1
()= o) (2 F)

v 6

As o leaves integers invariant

by b\ _ (a1 a2 a B
oby oby)  \oar ocaz) \y &
Since both bases are normalized we have that A € SLy(Z). Note next that

Qb1 .52) (X, Y) = N(a) ' (N(k.g) (h1X + b2Y))
N(a) " (N (a1 + agy) X + (a1 + a20)Y))
N(a) ' (Nx:g) (X + BY)ar + (vX +6Y )az))
= Q(ay,a0) (aX-‘rﬁY*yX—i—éY)

So we see that Q, p,) and Q (4, q4,) are equivalent.

Next consider the case where we replace a be some element of the narrow
class of a. So we consider b = aa for a totally positive. Then we have that aay
and aay is an integral basis for b. Next note that as A is totally positive

e (L2202 ) = amaaer (% rmz))
oaoa) oQoa ayp 0o0a2
= NKQ) \/ ‘ﬁ =\ de(OéCl).

So (aa1,aag) is normalized and so Quay,0a, 1S & well-defined quadratic form.
Again as N(g.q)(a) = N((a)) as « is totally positive,

Q(aar.000) (X, Y) = NK:Q(a;tléJ o) (5.1)
_ NgolaiX +aY)
B N(a) = Qar.a0)(X,Y) (5.2)

and so the two forms are indeed equivalent.
We thus have constructed a map

H:C;;*)Qd.
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Proof. (of Theorem [5.6)) We prove that x is bijective. We start with showing
that x is surjective. To see this let

Q(X,Y) =aX?+bXY + cV?

be a quadratic form with discriminant di. Denote by a the fractional ideal
generated by a and =4

2
Observe that

a(dK +2\/E) :_a((b—;/@)> +a<b+2dK>.

As dxg =2 mod 4 we have that

a(df{?/@) eZa@Z(b_;/E)

Second we note

<dK+M) (b@) _dk (b\/@)+b\/CEdK

2 2 2 2 4
d[{ <b—\/dK> b\/dK—b2+4ac
== +
2 2 4
_ (dx =D b—Vdg .
2 2 ac
So we have
(dK +2\/dK> <b2\/dK) GZa@Z(b;/dK> .

Together this shows that
a b—Vdg
’ 2
is an integral basis of a as O = 7Z {%}.

If a is positive then we set @« = 1 and if a is negative we set o = /dg.
To show that « is surjective we consider the fractional ideal aa which has as

explained above the integral basis a; = aa and a; = « (L VQdK) We observe

that this is a normalized basis as

b=vdx
ai az a I/=MYIK
det <<O’al O'Cl2>> = N(K:Q) (a) det <<a th\ZE)) = N(K:Q) (a)a\/cﬁ,

which shows that
‘ﬁ(aa) = N(K:Q) (a)a. (53)

Finally we consider the quadratic form

N(ay,as b—+/d
Q(ahaz)(Xv Y) = (grt,(a;ga)N(KQ) (aX + Y <;/7K>>

2
_ ! (a2X+abXY+Y2 (b 4dK>)

a
=aX?+bXY +cY?,
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where the second equal sign follows by and the last equation follows as
di = b* — dac. So we have showed that x([a]) = Q(X,Y).

It remains to prove that x is injective. To see this let a and b be two fractional
ideals with normalized bases (ai,a2) and (by,b2) such that Qq, 4,)(X,Y) is
equivalent to @, 5,)(X,Y’). By a change of basis we may assume

Q(al,az) (X7 Y) = Q(bl,bz) (X7 Y)

We want to show that these is some o € K totally positive, in this case
N(k.q)(a) > 0, such that a = ab.
Note that the form

Q(ar,a0)(1,Y) = a10a1 + (ar0az + azoar)Y + ascasY?

is zero if o oa
N —1)Y +Y2

20 a2 a9
So it has the roots —Z—l and —Z71. We we conclude that as Q(q,, a)(X,Y) =
Q(b1,b,)(X,Y) that either

0=

aq b1 aq O'b1
— == o —=—.
az by as by
We shall see that only the first case is possible.
In the first case where Z—; = bl . We set

a1 as
o= = —

by by

So a; = aby and az = aby and hence a = ab. Furthermore N x.q)(a) > 0 as

ot —aen (2 ;;2))=N<K:@><a>det((f§1 )
= Nk (@) V/dreDN(b)

For the second case where Z—; = % we set
ay ag

o= = —

Ubl CTb2

and so

aq as o O'b1 O'bg
o () R ()

and again since both bases are normalized we deduce N(g.q)(a) < 0. However
we also have that

(le + bQY)(O'le + O'ng) = Q(bl,bz)(Xa Y)
= Q(a17a2)(X’ Y)

1
= W(alX + aY)(oca1 X + caY)

N(b)

1
= Waaa(obl)( +obY) (01 X + b2Y).

This shows that
N(a) = N(b)N(x.q) (@)
which contradicts N(x.g)(a) < 0 and hence the second case is impossible. [
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5.3 Binary Quadratic Forms and Proper Ideals

In this section we generalize the main result of the last section to the case where
d is a positive non-necessarily fundamental discriminant. More precisely we
relate quadratic forms to proper ideals, a notion we already encountered in
Sections [4.5] and In contrast to the last section, we consider in this section
the quaadratic forms up to GLy(Z) equivalence, i.e. we say that two quadratic
forms Q1 and Q9 are equivalent if there is a matrix g € GL2(Z) such that
1

XY)=—— X, Y)g).

Q1(X,Y) det(g) Q2((X,Y)g)
Let d > 0 be a non-square discriminant, i.e. = 0,1 mod 4 and denote as in

Section 4.6{by K = Q(\/d) and Og4 = Z[d+—2‘/a]. Furthermore, as before write

Raise(d) = {Q(X,Y) = aX? + bXY +¢cY? : a,b,c € Z,dg = d and ged(a,b,c) = 1}
>~ {(a,b,c) € Z® : b* — 4ac = d, and ged(a,b,c) = 1}.

Denote by [Raisc(d)] the set of GLa(Z) equivalence classes of elements in Rgise(d).
The central result of this section is the following.

Theorem 5.7. The cardinality of [Raisc(d)] is equal to the cardinality of Pic(Oy).

Instead of directly constructing a bijection between Pic(Oy) and [Raisc(d)],
we first construct a bijection between [Raisc(d)] and GL3(Z)-conjugacy classes of
so-called optimal ring embeddings Oq — Ms2(Z) and then a bijection between
the latter set and Pic(Qy). In order to proceed, we first discuss ring embeddings
t: Oq = M>(Z) and then introduce the notion of an optimal ring embedding.

Denote by ¢ : Oq — M3(Z) a ring embedding. By extending ¢ Q-linearly, we
arrive at a ring embedding ¢ : K — M>(Q) (by a slight abuse of notation we
do not distinguish ¢ defined on O, and ¢ defined on K). The ring embedding
t: K — My(Q) is determined by the image of v/d. More precisely, if

Z = 1(Vd) € M5(Q)

then
a+bVd)=a-Idy+b-Z (5.4)

for a,b € Q.
Moreover, we want to determine which further conditions the matrix

Z = (”;" y) € My(Q)

w

has to satisfy such that «(Ox) C M3(Z) and so that ¢ is a ring homomorphism.
First ¢ is a ring homomorphism if and only if

o =0 007 =22 (410 )

This shows that if y, z # 0 then £ = —w and so tr(Z) = 0. Note that neither y
nor z can be zero, as if for example y = 0 then

2
2 x 0\ .
z <z(x+w) w2>d 14,
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and so d = z? for z,w € Q contradicting the assumption that d is not a perfect
square. So we see that ¢ : K — M5(Q) is a ring homomorphism if and only if
tr(Z) = 0 so that Z is of the form

Z= (: Y ) € Mx(Q).

—x

We next determine for which such Z the map ¢ defined by (5.4) satisfies
1(Ok) C M2(Z). This is equivalent to

L<m+n(d+—2‘/3)) - <m+nd> ~Id2+gZ

2
megs )
= d— € My(Z)

for all m,n € Z. This is equivalent to y, z € 2Z and d and x having the same
parity.

To summarize we have proved the following: The ring embeddings ¢ : K —
M>5(Q) are precisely given by the maps ¢z : K — M>(Q) defined by

a+bVd—1z(a+bVd)=a-1dy+b-Z (5.5)

where Z € M5(Q) of the form

7= (292 ny> (5.6)

for z,y,z € Z with y,z # 0 and where x has the same parity as d. We next
define, what we mean by an optimal embedding.

Definition 5.8. Let ¢ : Oy — M3(Z) be a ring embedding with extension

tz + K — M(Q) (given by (5.5) and (5.6)). Then we say that the ring
embedding ¢ is optimal if and only if

1, (My(Z)) = O4 C K.

In order to characterize optimal ring embeddings more easily we are going to
calculate 1, (My(Z)).

Proposition 5.9. Let vz : K — M3(Q) be a ring embedding given by (5.5) and
(5.6). Then

1

1
71 _ . p— L~ - <
Ly (My(Z)) = {m"'m/g Fme QZ,n € ged(2x, 2y, 2z)

Z andm+2nx€22}.

Proof. The proof is simply a calculation: Let a,b € Q with

B _(a+bx  2yb
Lz(a+b\/E)a.Id2+bZ( o2 a_b:C) € My(Z).

Adding the diagonal entries, we get

2a=(a+bx)+(a—bzx)€eZ
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and so a € %Z. Moreover, considering the non-diagonal entries and using that
y, z are both not zero we conclude b € ﬁZ and b € iZ. Write a = % for m € Z.
Then
m
a+br = ) +breZ

1

if any only if m + 2bx € 2Z, in particular b € ﬁZ. Thus b € WZ

Hence

1 1
—1
My (7)) C d:mé€=Zn€ —— 7 and 2nx € 27
L, (M (Z)) {m—l—n\f m € SZ,n 2cd (22,2, 27) and m + 2nx }
and the converse is obvious. O

Corollary 5.10. Let vz : K — M3(Q) be a ring embedding given by (5.5)) and
(5.6). Then vz is optimal if any only if ged(x,y,z) = 1.

Proof. Note that

d d 1 1
7 +2\[ :{2m+2n\/gzm,neZandm—l—ndeQZ}
1 1
= {2m+2n\/c§ : m,neZandm—i—nerZ}
as x and d have the same parity as Z2 = d - Idy and so d = 22 + 4yz. O

For v : O4 — M(Z) a ring embedding we can consider for each g € GL3(Z)
then conjugate element

9 Oq — My(Z), x> gu(x)g

We note that if ¢ : Oy — My(Z) is optimal, then so is every element from
its GLo(Z)-conjugacy class. Using Corollary we arrive at the aforemen-
tioned bijection between [Rqisc(d)] and the GLs(Z)-conjugacy classes of optimal
embeddings.

Proposition 5.11. Let d be a non-square positive integer. Then there is a bijec-
tion between [Raisc(d)] and the GLa(Z)-conjugacy classes of optimal embeddings
t:Oq = Ms(Z).

Proof. Note first that

Q(X,Y):aX2+bXY +c¥V? (;C _2;)
gives a bijection between the set of binary quadratic forms with discriminant d
and trace-zero matrices. Moreover

2 _ b —2a
dg =10 —4ac-—det<2C YR

Via (5.5) and (5.6) this yields a bijection between quadratic forms with discrimi-
nant d, where d is not a perfect square, and ring embeddings ¢ : Oy — M2(Z).

Moreover by Corollary we arrive at bijection between Rgisc(d) and optimal
embeddings ¢ : Oy — M>(Z).
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Finally, the statement follows by noticing that if g € GLy(Z) we have that

g.(aX? +bXY +cY?) ¢ g <2bc —_2ba> g L

O

Next we show that the set of GLy(Z)-conjugacy classes of optimal embeddings
is in bijection with Pic(Og4). The next proposition together with last proposition
implies Theorem [5.7]

Proposition 5.12. Let d be a non-square positive discriminant. Then there
exists a bijection between Pic(Oy) and the set of GLa(Z)-conjugacy classes of
optimal embeddings.

Proof. Given a proper Og-ideal a C K we choose an integral basis a1, as of a.
This yields a bijection

0:a— 72, may + nag — (m,n).
The bijection 6 induces the embedding
t: K — My (Q),
where we define for A € K the matrix «(\) € M2(Q) implicitly by viewing ¢(\)
by
vA)(p,q) = 0(A(par + gaz))
for p, ¢ € Q or equivalently so that (A - x) = t(A\)0(x).
Note that
TN My (Z)) = {) € K : 1(\)(m,n) € Z* for all m,n € Z}
={\ € K : O(\(may + nay)) € Z? for all m,n € Z}
—{\eK :)\acCal
So we see that : =1 (M(Z)) = Oy if and only if a is a proper Og-ideal.
Next, we observe that if we replace the integral basis a1, as of a by another
integral basis a/, a5, then let g = (2;;) € GL2(Z) be the change of basis matrix

such that
/
a; = Z;1041 + 2202

for i = 1,2. Write 6’ and ¢/ for the analogously to € and ¢ defined map with
respect to the basis a}, ab. Then if m,n € Z we have that

O(ma’ + nab) = 0((mz11 + nze1)ar + (mz21 + nzaz)as)
= (m211 + nzo1, M2o1 + nzge)ar) = g(m,n) = g’ (ma + nal).
Hence for A\, € K we conclude
o100 (1) = g HNB) = g 6() = 8 (\a)

and so t/(\) = g~ u()\)g showing that ¢/ and ¢ are in the same GLg(Z)-conjugacy
class. Thus we arrive at a map

{proper O4-ideals} — {optimal ring embeddings Oy — M5(Z)}/GLy(Z)
a— lg
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If we replace a by an element of the same ideal class a’ = pa for p € K*. Then
0'(ux) = 6(x) for z € a and so

t(N)(z) = 0(Az) = 0’ (Aux) = /(N0 (ux) =/ (N)0(z)

showing that ¢(A) = //(\) and that the above map a — ¢, gives a well defined
map [a] — [tq] defined on

{proper Og-ideals}/K* — {optimal ring embeddings Ox — M>(Z)}/GLa(Z).

We now give an inverse to the above map, showing that it is bijective. Let
t: K — M3(Q) be an optimal embedding of O4. Denote e; = (1,0) € Z?. The
map
Y K — Q2 A= t(Ney

is an isomorphism of Q-vector spaces, as it is clearly linear and also injective by
the characterization of optimal embeddings (5.5) and (5.6). Now set

ay =N (2%) ={ne K : u(p)es € 2%}

and we claim that a, is a proper Og4-ideal. To see this first note that ay is a free
Z-module of rank 2 as v is an isomorphism of Q-vector spaces. Now we show
{Ae K : day Cag} =04 Solet A € Q4. This follows as A € Oy if and only if
multiplication by A is represented by an integer matrix and so the claim follows.

It remains to check that the two maps are inverse to each other. First consider
a a proper Og-ideal and denote as above i, : K — M3(Q) the associated optimal
ring embedding and by 1, : K — Q2, A — ¢(\)e;. We need to show that 1 *(Z?)
is in the same ideal class as a. We calculate

Y UZH) = (A€ K : 0(ha1) = ta(Ney € Z%}
={\ € K : Aay = may + nay for m,n € Z}

mai + nasg a
7f0rm,n€Z}:—
a1 ay

and so [a] = [¢71(Z?))].

For the other direction let ¢ : K — M5(Q) be an optimal ring embedding with
1 defined as above. Let a = ¢~1(Z) and write a; = ¥~1((1,0)), az = ¥ 71((0,1))
so that a; and as form an integral basis of a. Observe that

0:a— 72 may +nay =~ ((m,n)) — (m,n).

So @ o™t =id so § = 1 as both maps are bijective. Thus, in this case ¢4 is
given as
ta(A)(m,n) = 8(A(may + nas)) = Y(A(may + nas)).

Thus, viewing t4(A) as a matrix we conclude

ta(A) = (La(MN)(1,0)  wa(A)(0,1)) = (¥(Aa1)  ¥(Aaz2))
= (t(Aar)er  t(Xay)er)
(tN)e(ar)er  (A)az)er)

M((ar)er  i(az)er)

as t(a1)er = ¥(ar) = ¥(xb~1(1,0)) = (1,0) and analogously ¢(az)e; == (0, 1).
Thus ¢4 = ¢t. Thus we have showed that the maps are inverse to each other. [
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5.4 Binary Quadratic Forms and Duke’s Theorem

Let X = PGL2(Z)\PGL2(R). In this section we first give a different viewpoint
on the collection of geodesics

Gy = U Tq.A (5.7)

a€Pic(Oy4)

constructed in Section based on quadratic forms.

We use the same notation as in the previous section for Q4 and Raisc(d)
for d a positive discriminant. The group GLy(R) acts on Qg4 or Ragjsc(d) for
g € GLa(R) by

(9-Q)(X,Y)

= G AE )

for @ € Qg. The above action factors through an action of PGLy(R). Viewing
the space of quadratic forms as part of the space of symmetric matrices, where
each quadratic form Q(X,Y) = aX? + bXY + cY? is represented as

Bo = (b?2 béz)

the above action intertwines with the action

0 gl )

Let d > 0 be a non-square discriminant. Then for (a,b,c) € Ryisc(d) we
consider the points on the real line

—b++d

La,b,c,+ = 2

which only depend on the GLy(Z)-orbit of (a,b,c). Viewing x, ..+ as elements
of the boundary of H there exists a uniquely determined geodesic on H with
endpoints T4 pc,+. We denote by y(qp,) the lifting of the geodesic to the unit
tangent bundle of H. Moreover, we can view the geodesic (4 5,) as an A-orbit
in X = T (SLy(Z)\H), which we denote by 7()2,17,(;)' So we can consider the finite
collection of curves

U e (5:8)

(a,b,c)€[Raisc (d)]

The first goal of this section is to show that this latter collection of curves equals
the collection of periodic A-orbits Gg.
For (a,b,c) € Ryisc(d) we denote

_(b+Vd b—Vd (0 -1
ha,b,c—( 9 o ) and w—(l O)GSLQ(Z).

Then whgp = (bf\/ca b:%) and so

2¢ 2¢ b++vVd —2b—2cv/d b+Vd
Whg pe.0 = = = =

_b—\/ﬁ _b—\/gb-q—\/g_ —4ac 2a
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and

2¢ 2c b—\/&_—ch—l—ZC\/a_b—\/&

b+vd b+ Vdb—Vd —dac 2a

This shows that hgp c.A corresponds to y(q,p.c). Furthermore we calculate

Whe p,c.00 = —

1 0 3\ ,7 L (b¥*—d 2cb 1 (a %
hU«;b7C 1 ha b,e — 2| = b .

det(hqp.c) 5 0 P ge/d \ 2¢b 4e va\s ¢

Denote the quadratic from Qo(X,Y) = XY. Then the above calculation shows

that
Vd(hape.Qo)(X,Y) = aX? + bXY + cY?

As A is the stabilizer subgroup of Qg this shows that 7, 5,.) corresponds to the
elements h € SLa(R) such that

Vd(h.Qo)(X,Y) = aX? +bXY 4 Y2,

Furthermore, VE)Z,b,c) consists of all elements 2 = I'g € X such that v/d(h.Qo)(X,Y)
is in the same GLy(Z)-equivalence class as aX?2 + bXY + cY2.

Now consider the proper O4-ideal a and denote by (a4, by, ¢q) the element of
Raise(d) given by the bijection of Theorem In Section ?? we used the norm
form @, defined for any integral basis a1, as by

N(K:Q) (alX + G,QY)
N(a)

Qa(XvY) =

which neither depends on the choice of integral basis nor on the ideal class of a.

In order to show that the collections E.7 and E.8 are the same it suffices to
show 4.4 = (4, be,ca), Which follows as above by showing that Vd(z4.Q0)(X,Y)
is in the same GLgy(Z)-equivalence class as

4o X? + b XY 4 ¢, Y2,
Fix a; and as an integral basis of a such that
Lo = a1 0'((11)
a9 O’(ag)
has positive determinant, i.e. such that det(z4) = y/d(a). Then as

Wj)QO(alX + (]/23/7 J(alX + CLZY))

Vd

Vid(24.Q0)(X,Y) =

= WN(K:Q) (1 X + a2Y)
B N(K:Q)(alX +CL2Y) B
Nl X el _o,xy)

we have that v/d(z,.Qo)(X,Y) is the norm form Qq(X,Y) we already encoun-
tered in the previous subsections. So we need to show that the norm form
Qa(X,Y) is in the same GLy(Z)-equivalence class as aq X2 + by XY + ¢, Y2
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Explicitly considering the bijection from section observe (using the same
notation as in section [5.3]) that

WV = ().

2¢cq

where 14(v/d) is the uniquely determined matrix in GLy(Z) such that
Viday ay baa1 — 2aqa9
— d — a a
(\/ﬁag ta(Vd) as 2cqa1 — baas

ala(al)Xz + (ala(ag) -+ aga(al))XY + GQJ(GQ)Y2
N(a) '

We note that

Qa(X,Y) =

We calculate

(a10(az) + azo(ar))ar — 2a10(a1)az _ d(a)ar _ Via,

N(a) ~ N(a)
and (2a20(az)ar — (a10(a2) + azo(ar))as _ d(a)
ag0(a2)a1 — (a10(aa as0\ay))as a)as
MN(a) ~ M) = Vda,
and thus

Qu(X,Y) = 4o X% + by XY + ¢, Y2,
implying the claim.
Recall from Section the height of a lattice L = Z2g with g € GL2(R) to

be
Lt(L) = minger oy [0\ ™ _ ( mingezego) [logll
vol(L)1/2 |det(g)]1/2

and denote
XZH = {:E eX: ht(ZL') < H}

The aim of the remainder of this subsection is to prove the following proposition.

Proposition 5.13. For any € > 0,
(ta % pa) ({(@,y) € X2 + dx(z,y) < 0}) < H'dd°
for d—7 <6< %H*Q and H > 1 large.

Before proving Proposition [5.13| we make short digression on the represen-
tation of quadratic from. Let ¢ be an integral quadratic form in n-variables
and let Q one in m-variables, where we assume n < m. We call Z—linear map
L: 2™ — Z™ a representation of ¢ by @ if for all x € Z™ we have

Q(e(x)) = q(x).
Denote by Rg(g) the set of such representations. We write

SO0g(Z) ={A e M,,(Z) : Q(Az) = Q(z) for all x € Z™}
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for the special orthogonal group with respect to (). Then SOq naturally acts on
the set Rg(q) and the quotient SOq(Z)\Rg(q) is finite.

For a more extended discussion concerning the representation of integral
quadratic forms we refer to section 3.2 of [ELMV12]. We will be only interested
in the representation of the quadratic form ¢(X,Y) = dX? + (XY + dY? for
d as above and £ some integer by the ternary from given by the discriminant
disc(X,Y, Z) = Y? —4X Z. In this situation the following result holds.

Corollary 5.14. (Corollary 3.5 of [ELMVI12]) Assume that £ # £2d, then
1SOdisc(Z)\{(Z?,dX? + (XY + dY?) — (Z*,disc)}| <. fmax(|d|,|¢])®
where f? is the largest square divisor of ged(d, ).

Moreover, we next explain how we can embed PGL3(Z) into SOgisc(Z). We
note that Z3 can be viewed as the space of binary integral quadratic forms.
As the action of PGLy(Z) on this latter space preserves the discriminant, each
element of PGL2(Z) corresponds to a uniquely determined element of SOg;sc(Z).
As SOgisc is rationally equivalent to PGLy it follows that we can replace in
the statement of the group SOgisc(Z) by the image of SLy(Z) under this
injection. Thus

ISLo(Z)\{(Z?,dX? + (XY 4 dY?) — (Z3,disc)}| <. fmax(|d|, |(]) (5.9)

We now turn towards proving Proposition[5.13] Denote by .% the fundamental
domain of X given by

F ={(2,v) € H x S" such that |[Re(z)| < % and |z > 1}
and by #' a slight extension of %’ given by
F' ={(z,v) € H x S* such that |Re(z)| < 1 and |2 > 1}.

We progress by a few preliminary observations. Let z1,22 € X<y such that
dx(x1,22) < 6. Write z; = I'g; for i = 1,2 and ¢g; € PGL2(R). In order to
bound coeflicients of g;, we always assume that the matrix g; has determinant
+1.

We choose g1 such that g1 € & and g2 € PGLy(R) such that dg(g1,92) < §
and so for ¢ sufficiently small, go € #’'. We claim that ||g;|| < H. We
assume without loss of generality that g; has determinant 1. We use the NAK
decomposition of SL2(R) in order to write

a t
g1 = <O a—1> k

a,t € R with a # 0 and for k € SO2(R). As g1 € . N X<y we conclude that
Re(g1.1) <1 and % < Im(g;.i) < H?. We note that

g1.0 = a’i + at

and so 3 < |a| < H and [t| < - < 2. Thus all the coefficients of g, are < H.

lal

As g5 is close to g1 we conclude that ||g;|| < H.
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We now associate to g; the primitive integral quadratic form
G(X,Y) = Vd[gi.qo](X,Y) = a; X? + b; XY + ¢;Y?

with d = b? — 4a;c; and ged(a;, b;,¢;) = 1. Towards the estimate of Proposi-
tion the case where g1 = g2 will be easier, so we focus on the case q1 # ¢s.
We want to count the number of such possible tuples g1, g2 such that ¢; # 2.
By compactness of G; the number of distinct such quadratic form is finite and
we write

1 1 k k
TV, gM), ..., T(g®, ¢S

for a complete list of such quadratic forms. Our first aim is to count k effectively.

Lemma 5.15. In the above setting,

k<. d'T2HAS2.

Proof. As ||g;|| < H, it follows that
max(|a|, [bi], |ei]) < d'/*H?

and as by assumption g, = g1h for d(h,id) < & we conclude that g = V/dg (h.qo)
with [|h.go — go|| < ¢ and so

max(|a; — agl, |b1 — b, |c1 — ca|) < dY/?H?S. (5.10)
We now define the quadratic form
q(X,Y) = disc(X (a1, b1,¢1) + Y(ag, by, c2)) = dX? +LXY +dY?
for £ € Z. Thus the map
V7P = 7P, (g) = ZI Zi ()Y(>
1 Co

defines a representation of dX?2 + (XY + dY? by disc.
Note that

2d -t = 1,—-1)| = disc(a; — as,b; — ba,c1 — c2 <<dH452
| q 7 ) 7

and so there is only a finite number of possible values for ¢. Furthermore,
assuming that ¢; # g we show that £ # +2d. Indeed, if £ = £2d, then

d(a2 F a1)2 = da% + 2dasa + da% = q(a2a 70’1)

= disc(ag(ar1bic1) — ay(az, by, c2)) = (agby — aby)?
which contradicts the assumption that d is not a perfect square. So by ,
Noa = |SLo(Z)\{(Z*, dX?* + (XY +dY?) — (Z3,disc)}| <. fmax(|d]|, |¢])°
and so Ny g < fd® as d > 0 and as by
|| < |6 —2d| +2d < 2d + dH*$* < d
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as d—1/4 < §< HZ
If F(q1 ,qél)) and I‘(q(] ), qéj )) are different then they define different embed-
dings up to SLa(Z)-equivalence, where we view SLy(Z) < SOqisc(Z). Thus

k< Z Nyg

all possible ¢

<2 2
f2|d all possible £
611{4(52
<3 s
f2ld
< Z dite g4 52
f2ld
<, d1+25H452
where in the third line we used that ¢ has to satisfy |2d — ¢| < dH*6% and f?|¢ so

that % is square-free. In the last line we used that the number of divisors
of d can be bounded by <. d® for any ¢ > 0. O

Lemma 5.16. Let (z1,22) = (I'g1,Tg2) € (GaN X<p)? be as above such that

dx(x1,22) < 6 and q1 # q2. Then there some j so that x; = Fg( )at where
t € I; for I; some interval of length < log(d).

Proof. Choose j so that (v/d(g1..0),Vd(g2.q.0)) = (q%j),qéj)). We note that
Ga C X_41/4 and so using (5.10]) there is a constant ¢ so that
max(|a; — azl, [b1 — ba|,|e1 — ca|) < ed/?(dY*)?5 < cds.

Thus d(g1at, g2a;) > %d_l. In particular, d(gia¢,g2A) > id_l. So it follows
that for any j the inequality d(gias, g2 A) < 1 can only hold in an interval of
length < log(d). O

Proof. (of Proposition [5.13)) Let (z1,72) = (I'g1,Tg2) € (Ga N X<m)? be such
that dx (z1,z2) < 0 for g1, g2 as above. Then as before we associate to xz; the
quadratic form ¢; = V/d(gi.qo)(X,Y). Recall that lenght(G2) = d'*°(). So it
suffices to show that

length({(z,y) € (GaN X<u)? : dx(z,y) < 6}) <. H*63d'

If ¢y = ¢o then z; and x5 lie on the same geodesic and so in this case we
have that all these points can be described by

{(z,2a;) € (GaNX<n)® : |t <0} C {(z,2ar) € (Ga)* : |t] < 6}
Thus we have length({(z,za;) € (Ga N X<u)? : |t| < 6}) < § - length(G,) <.
§d2+e so as d—1/4 < 4,
(pa x p1g)({(z, za) € (GaN X<p)? : |t] < 6}) <o 6d~V2d° <. 63d°.

In the case q1 # g2 Lemma and Lemma apply and so the length of
the set

{(z1,22) € (GaN X<m)? @ dx(w1,72) <6 and q; # g2}
can be bounded by Z?:l 1,16 < log(d)ké <. H*§3d 2=, 0



6. p-adic Numbers 73

6 p-adic Numbers

6.1 Definition of the p-adic Numbers
Definition 6.1. A wvaluation on a field K is a map
|-]: K = Rxo
such that the following three conditions hold:
1. || = 0 if and only if z = 0.
2. |zy| = |z| |y| for all z,y € K.
3. jx+y| <l|z|+y| for all z,y € K.

We furthermore call the valuation |-| non-Archimedean if it satisfies the additional
condition
|+ y| < max(|z], [y])

for all z,y € K.

Let p be a prime number. We consider the field of rational numbers Q
together with the p-adic valuation

pfordp(a:) if = 7& 0,
2|, = e
0 if x =0,

where we define the p-adic order of x as

d(2) the highest power of p that divides x if z € Z,
or =
P ord,a — ord,b if v = 7 with a,b € Z and b # 0.

Example 6.2. If p = 2, then we have that
orda(1) =0, ordz(2) =1, ord2(3) =0, ordy(4) =2, ordz(5) =0
and hence
2=27" [a=B=52=1 [32=2 and [}2=]fl2=4.
The next theorem states that | - |, indeed defines a valuation on Q.

Theorem 6.3. For any prime number p, the function ||, defines non-Archimedean
valuation on the field Q.

Proof. It is clear that |z|, = 0 whenever = 0. For the proof of the remaining
properties the case when x = 0 or y = 0 is clear. Next note that

ordy(z - y) = ord,(z) + ord,(y)

for all z,y € Q\{0} and hence

[l - yl| = pordr @) = p(erdn(@Tords @D — 1] ||y]].
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To prove that the norm is non-Archimedean, it suffices to prove for all z,y €

Q\{0} that
ord,(z + y) > min{ord,(z), ord,(y)}.

This property also implies the triangle inequality.

The prove the above equation it suffices to consider

p"r d _p
e an Yy = Ty
p P

for positive integers 1y, ms, ny and my. Then

panrmy + pnermw )

ord,(x +y) = ord (
P( ) P pmermy

= min{n, + my,ny + my} — (Mg +my)
= min{n, — my,ny —my}

= min{ord,(z), ord,(y)}.
O

Definition 6.4. The p-adic numbers QQ, are the completion of Q with respect
to the valuation | - |,.

We give an explicit construction of the p-adic numbers, which will show that
the p-adic numbers form a field.

Denote by R the set of Cauchy sequences of Q with respect to | - |,. Note
that R can be considered as a ring if we define addition and multiplication of
two Cauchy sequences x = (x1,x9,x3,...) and y = (y1,Y2,¥s3,...) as

r+y=(v1+y1, 22 +y2,3+y3,...) and Ty = (T1-Y1,T2 Y2, T3 Y3, )

These operations are well-defined as = + y and x - y are again Cauchy sequences,
as a straightforward verification proves. Furthermore Og = (0,0,0,...) forms a
neutral element for the addition and 1z = (1,1,1...) makes R into a commutative
unital ring. Inside R we consider the ideal m consisting of sequences that converge
to 0 € Q. We claim that m is a maximal ideal. To see this, let a C R be an ideal
with

mCacCR.

Then there is a Cauchy sequence x = (21, 23,23, ...) € a such that the sequence
|z,|, does not converge to 0, hence |z,|, converges to p"= with n, € Z. As a
contains all sequences that converge to 0 € Q, we have that every sequence whose
p-adic norm converges to p"* is contained in a. By multiplying the sequence x
with p™=~"™ for n € Z we arrive at a sequence whose p-adic norm converges to
p". Hence a = R.

For an element © = (21,29, 23,...) € R/m we define

ol = lim [2al, € {p" : n € Z}U{0},

where we note that |z, |, converges as |z,|, is a Cauchy sequence in R with
values in the set {p" : n € Z} U {0}. We can embed Q into Q, by the map

Q= R/m, ¢ (q.¢4q.--.)
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With all this we one shows, as in the case of the completion of a normed vector
space, that Q is dense in @, and that R/m is a complete normed field. So we set

Qp :=R/m.

Every p-adic number has a so called p-adic expansion, as we show in the next
theorem.

Theorem 6.5. Let x be a non-zero p-adic number with |z|, = p™ for m € Z.
Then we can write x uniquely as a converging sum

o0
T = Z dip’ (6.1)
for0<d; <p andd_, #0.
We start with the following lemma.

Lemma 6.6. Let = be a rational number with |z|, < 1. Then for any i € N
there is a unique o; € {0,1,...,p" — 1} such that

%

[z —aulp <p~"

Proof. Write x = %m for m € Z>o and a,b € Z with p not dividing a or b. We
want to find an «; € {0,1,...,p" — 1} such that

ba; —ap™ =0 mod p'.

As b does not divide p, there is a multiplicative inverse b=* of b in Z/p*Z. Thus
«; is the unique element in {0,1,...,p* — 1} such that

a; +p'Z = ap"bt + p'Z
in Z/p'Z. O
Theorem can easily be proved by using the next proposition.

Proposition 6.7. Let « be a p-adic number with |z|, < 1. Then there is a unique
Cauchy sequence a = (a1, az,as,...) that represents x such that 0 < a; < p' and
a' = a'™! mod p.

Proof. Let x = (x1,x2,x3,...) be a representative of x as a Cauchy sequence.
As lim;_, |zi|p, = |z|p, we have that |z;], < 1 for almost all 3. Thus we can
assume without loss of generality that |z;|, <1 for all i € N.
Since (z1, 9,3, ...) is a Cauchy sequence for all j € N there is some N (j)
with
|z —x1]p < p™’

for k,1 > N(j). By Lemmathere is a unique 0 < a; < p’ with

TN () — aslp < P77
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We note that a := (a1, a9, as,...) is a Cauchy sequence as for any € > 0 we
have

lar — ailp = lax — TNy + TNy — TNy FTNa) — 2] <€
for k and [ large enough. Furthermore a represents the same element as x since
laj — jlp <laj —xng) +2nG) — 25l <€
for j large enough.
Next, we prove that a; = a;41 mod p’. To see it suffices to note
|aj = ajyilp < lai = TngG) + 2NG) = TG+ T ENGH) ~ Gl
< max{lai = 2n () lps |28 G) = 2N G0 e [TN G — aialp}
<p.

Finally we show that x can be uniquely represented in such a way. To see
this let @ = (a1, az2,as,...) and o’ = (a}, ah,ak,...) be a two such representation
with a;, # aj, for some ig. Then we have for all i > io that

a; = a;, # aj, = aj mod p’
and hence ‘
|a; — aﬂp >p

for all ¢ > i¢. This is a contradiction as this shows that a and a’ do not represent
the same element. O

Proof. (of Theorem We first note that for any choice of 0 < d; < p the

sequence
!
x = g d;p"

1=—m
forms a Cauchy sequence as
l k max{l,k}
o=kl = | > dip' = D dip'| =| Y dipt| <p ™AL
i=—m i=—m p i=min{l,k}
p

By multiplying by « with p~™ we can assume without loss of generality that
|z|, = 1. The last proposition gives a unique representation = = (a1, ag, as, . . .)
with 0 < a; < p* and a; = a;41 mod p*. Hence there are unique 0 < d; < p with

a;=do+dip+...+di1p"

for ¢ > 0. So we have a unique decomposition

T = i dip'.
i=0
O

Definition 6.8. A p-adic number a € Q, is said to be a p-adic integer if and
only if its p-adic expansion contains only nonnegative powers of p. The set of
p-adic intergers is usually denoted by Z,,.
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Corollary 6.9. We have that

Zp:{aEQp:a:Zdipi withOgdi<p}:{aer s alp, < 1%

=0

Proof. This follows immediately from Theorem [6.5 O
For two p-adic numbers
a= Z a;p' and b= Z bip!

we have that
o0

a+b= Z (ai +b;)p',

i=—m
where we note that with this definition a + b might not be in the standard form
(6.1) but can easily be modified to attain the standard form. We also have

oo
a-b= Z cip’
i=—2m

where
C_om = afmbfmv C—2m+1 = afmbfqul + aferlbfm

and so on.

6.2 Algebraic Properties of the p-adic Integers

In this subsection, we state and prove some algebraic properties about the p-adic
integers.

Proposition 6.10. The p-adic integers Z, form an integral domain and the the
units of Z, are

Zy = {Zaipi tag # 0} ={reQ : |z, =1}
=0

Proof. The second equality is clear. To prove the first let a = Zfio a;p* be a
unit in Z,. If ag, was zero. Then for any p-adic number b = Zio b;p’ we had

a~b=0+boa1p—|—...7é1.

Conversely if a =) ;2 a;p’ satisfies ag # 0. We want to find a p-adic number
b= Z;’ZO b;p’ with 0 < b; < p such that a-b= 1. We can find by such that

agbp=1+n-p
for some n > 1. Next we need to choose b; such that
n-p+ agby +bga; =0 mod p.

Such a by exists as ag is invertible in Z/pZ. Continuing this process, always
using the fact that ag is invertible in Z/p™Z for all n > 1, we arrive at a p-adic
number b= Y"7° b;p' with a-b = 1. O
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The next proposition shows that Z, is a principle ideal domain and the only
prime ideal in Z,, is pZ,,.

Proposition 6.11. Let a be a non-zero ideal in Z,,. Then there is a an integer
n > 0 such that

a=p"Z,={xcQ, : |z|, < pi,,}

Furthermore
Zp/anp = Zp/p"Z,

Proof. Let a be a non-zero ideal in Z,. Then choose a non-zero element = € a of
minimal norm. By Proposition we can write z = p"u for n > 0 and u € Z;f.
Hence a = p"Z,.

Finally consider the homomorphism

p:Z — Ly /D" Ly, x> x4+ p L.

Note that p is surjective as we can find for any x € Z, some number o € Z such
that

|z —al, < ﬁ
and hence r — a € p"Z,. Furthermore the kernel of p is p"Z implying the last
statement. O

Finally, we give an equivalent characterization of the p-adic integers. We
consider the projective limit

@Z/p”Z = {(an) € H Z/p"Z : any1 = a, mod p" for all n > 1} .

neN n=1

By Proposition @ for any p-adic integer a € Z,, there is a unique rep-
resentation of a as a Cauchy sequence a = (a1,a9,a3...) with 0 < a,, < p”
and a,.1 = a, mod p". By viewing a,, as an element in Z/p'Z we get a ring
homomorphism

Ly — m 7/p" 7.
neN
This ring homomorphism is injective as the above representation of a as a
Cauchy sequence is unique and surjective as any such sequence (aq, a9, as,...) is
Cauchy and hence defines an element in Z,. This all is summarized in the next
proposition.

Theorem 6.12. There exists a ring isomorphism

Zp — lim Z/p"Z.
neN

6.3 Topological Properties

We consider @, together with the topology induced by the norm | - |,. The aim
of this subsection is to discuss a few interesting topological properties of the
p-adic numbers and p-adic integers. For instance, the p-adic numbers are totally
disconnected and hence differ dramatically form the real numbers.
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We first discuss topological properties of Q,. For a € Q, and r > 0 we define
the ball of radius r around a as

B(a,r):={x€Q, : |z —al, <7}

and the sphere
S(a,r) ={reQ, : |z —al,=r}

Proposition 6.13. For any a € Q, and r > 0 the sphere S(a,r) and the ball
B(a,r) are open and closed.

Proof. By definition of the topology on Q,, the ball B(a,r) is open and
S(a,r)={x€Q, : |zt —al, <r}nB(a,r)®

is an intersection of closed sets as | - |, is continuous.
To prove that S(a,r) is open, let x € S(a,r). We show for any € < r that
B(x,e) C S(a,r). To see this let y € B(x,¢e) and hence

ly —zlp <e<r.
As the p-adic norm is non-Archimidean
ly—alp =y —z+z—al, <max{ly —alp, [v —al} =7
so |y — a|] <r and
r=lz—alp=lr—y+y—alp <max{lzr —ylp,ly —alp} = |y —alp
as |z —yl, <r. So|y—a| =rand B(z,e) C S(a,r).
As S(a,r) is open, it follows that
B(a,r)=8S(a,r)U{z € Q, : |xr—a|>r}
is open and so B(a,r) is closed. O

Proposition 6.14. Let a € Q, and r > 0. Ifb € B(a,r) then B(b,r) = B(a,r).
Furthermore if the intersection of any two balls is non-empty, then one ball is
contained in the other.

Proof. Let x € B(b,r). Then
|t —al=|z—b+b—a| <7

Conversely if « € B(a,r) we have |z — bl = |z —a+a—b| <.

Next let B(a,r) and B(b,s) be two balls for a,b € Q, and r,s > 0 with
non-empty intersection. We assume without loss of generality that r < s. We
have some element x € B(a,r) N B(b,s). Then by using the first part of the
proposition

B(a,r) = B(z,r) C B(z,s) = B(b, s).

O

Theorem 6.15. The p-adic numbers are a totally disconnected topological space.
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Proof. Let « and y be distinct point, so |z — y|, = p™ for m € Z. Then
x € B(x,p™ 1) and y € B(y,p™ ') are disjoint open and closed sets containing
x and y. Hence z and y do not lie in the same connected component. O

We now move over to study properties of Z,,.

Proposition 6.16. The p-adic integers are a compact and hence complete subset

of Qp.

Proof. Consider a sequence x™ of p-adic integers given in the standard form

Then we can find a subsequence of ™ such that x]* converges for all ¢ and hence
is constant for large enough n. We assume without loss of generality that =]’ = x;
for n large enough and write x = Zfio z;p'. Fix ip a number and choose N
large enough such that z}' = x; for all i < iy and N > n. Then we have for all
m > N that

o0
" —aly = | D (@] — x| <p ot
i=ip+1 p
and hence 2™ converges to x. Thus Z, is compact. O

In the discussion below, we specialize for simplicity to the case p = 2. However,
one can easily vary the below result for any prime number p.
Consider the Cantor set

C= {Z 32‘1’1 with a; € {0,2}} c[0,1]

=0

with the induced topology from [0, 1]. Note that the Cantor set is Hausdorff.
Theorem 6.17. The dyadic integers Zo are homeomorphic to the Cantor set.

Proof. Consider the map

o
2(11'

3i+1 ’
1=0

ViZy—C, a=) a2 —
1=0

where a = >~7° ) ;2" is written in the standard form with a; € {0,1}. As any
dyadic number can be uniquely written in such a way, it follows that 1) is bijective.
We claim that v is a homeomorphism. As Zs is compact and the Cantor set is
Hausdorff, it suffices to prove that v is continuous. Let £ > 0 and choose n > 1
such that 3% < e. If for a',a? € Zy with the dyadic expansion

oo o0
al = E a2 and a®= E a?2’
i=0 i=0

it holds that

a1—a2\§37
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1 _

we then have a} = a? for all i <n. So

[Y(a1) —P(az)| <e.

Corollary 6.18. The Cantor set is totally disconnected.

Proof. This statement is implied by the last theorem and Proposition [6.15] [
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7 Valuations and Local Fields

7.1 Valuations

In the last section we studied the field Q with the p-adic valuation | - |,. In this
section we study valuations more generally.

Theorem 7.1. A valuation |- | on a field K is non-archimedean if and only if
|n| is bounded for n € N.

Proof. If the valuation is non-archimedean, then
[n|=14+...+1] <|1]

and hence |n| is bounded by |1] for any n € N. Conversely assume that |n| < N
for all n € N. Then let z,y € K and assume without loss of generality that
|z| > |y|. Then we have that |z|"|y|" ™" < |z|™ for v > 0. So we have by the
triangle inequality
n
()

e ym <D |z"|y[" < N(n+1)[z]".
v=1
@+ y| < NV )" e = N7 (1 4 n)Y" max{|z], [y[}

So we have that

and so |z + y| < max{|z|, |y|} as N/"(1 + n)'/™ converges to 1 as n — co. [

Definition 7.2. We call two valuations on K equivalent if they induce the same
topology on K.

Theorem 7.3. Two valuations |- |1 and |- |2 on K are equivalent if and only if
|1 = [[3
for all x € K and some s > 0.

Theorem 7.4. FEvery valuation on Q is equivalent to one of the valuations | - |,
for p a prime number or to the euclidean norm | -| on Q.

7.2 Global and Local Fields

Definition 7.5. A global field is a finite extension of either Q or F,(¢) for p a
prime number.

Definition 7.6. A local field is either R, C or a finite extension of either @, or

Fp((1))-



83

Part 11
The Theory of Linear Algebraic
Groups



8. Essence of Algebraic Geometry 84

8 Essence of Algebraic Geometry

8.1 Zariski Topology

Let K be an algebraically closed field. We consider the space K" = K X ... x K
which is called affine n-space and is also also sometimes denoted A™. Furthermore
we consider the noetherian polynomial ring in n-variables K[X7, ..., X,,] which
we will mostly abbreviate by K[X].

For any ideal a C K[X] we define the vanishing locus of a as

V(e)={x e K" : f(z)=0for all f € a}.
Proposition 8.1. We have the following properties:
1. V(K[X]) =0 and V((0)) = K.
2. If two ideals a,b C K[X] satisfy a C b then we have V(a) D V(b).
3. For any ideals a,b of K[X] it holds that

V(anb) = V(a) UV(b).

4. For a collection of ideals a; C K[X] with i € I we have that

1% <Z ai> = ﬂ V(a,).

icl

Proof. 1. and 2. are clear. For 3. note that aNb C aand anb C b and so
V(anb) D V(a) UV (b). Conversely assume for a contradiction that € V(anb)
but € V(a) UV(b). Then we have there is some f € a and g € b such that
f(z) # 0 and g(x) # 0. So we have that f(z)g(xz) # 0 as K is a field. Since
ab C aNb we hence arrive at the contradiction « & V(aNb).

For 4. mnote that )7, ;a; D a; for all i € I and hence V(Ziel ai) -
Micr V(a;). Conversely if x € [;.; V(a;), then for any finite number of elements
fj € a;; with 1 < j < n we have

fi@) 4+ 4 fulz) =0
andsoz €V (3, ai). O

By this proposition we can define a topology on K™ for which the closed sets
are precisely the sets V' (a) for a any ideal in K[X]. This topology is called the
Zariski topology.

Example 8.2. We show in the following that the Zariski closed sets in K = K!
are precisely the finite sets.

First note that any finite set {x1, ..., x,} is Zariski closed by considering V (a)
for a the ideal generated by the polynomial (X — 1) -...- (X —x,). Conversely
if a is an ideal then, as K[X] is noetherian, there is are finitely many generators
fi,--., fn such that

n

a= (f17"'7f”) = Z(fz)

i=1
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So
Vi@ = V()

is finite as the set V'(f;) consists precisely of the finitely many zeros of f;.

Example 8.3. Consider in this example K = C and the Zariski closed subsets
of C™. As in the last example we note that for any polynomial f € K[X] we
have

V((f))={z€C" : f(z) =0}
As any polynomial is continuous, we note that the set V' ((f)) is closed. Thus as
any ideal a C K[X] is finitely generated we can write

n

Via)= V()
i=1
for a = (f1,...,fn). So any Zariski closed set is closed with respect to the
euclidean topology.

We next note that any closed euclidean r-ball B,.(z) = {y € C" : |z —y| < r}
for any = € C™ is not Zariski closed. To see this assume that there was some
ideal a C K[X] such that V(a) = B,(z). So we have that for any f € a that
f(z) =0 for all B,(xz). Thus f =0. So a = (0) but this is a contradiction as
V((0)) = C™ # B,(x). This also shows that any euclidean ball is Zariski dense.

Next we study the converse operation to V', namely for any subset Z C K"
we define the ideal associated to X as

I(Z)={fe K[X] : f(z)=0forall z€ Z}.
Recall that the radical of any ideal a is defined as
rad(a) = {f € K[X] : f™ € a for some n}.
Furthermore an ideal is called radical if it is its own radical.
Theorem 8.4. (Hilbert’s Nullstellensatz) Let a be any ideal in K[X], then
I(V(a)) = rad(a).
Proof. For a proof see [Hum75] Page 5. O

Corollary 8.5. The Zariski closure of any set Z C K™ is V(I(Z)). Moreover,
the map I is a bijection between Zariski closed sets in K™ and radical ideals of
K[X] with inverse V.

Proof. As Z C V(I(X)), it remains to consider a Zariski closed set C' = V(a)
that contains Z. Then a C I(Z) and so C = V(a) D V(I(Z)). So V(I(Z)) is
indeed the Zariski closure of Z.

Next let C = V(a) be a Zariski closed subset. Then we have by the Nullstel-
lensatz

V(I(C)) = VI(V(a))) = V(rad(@)) = V(a).
Furthermore if a = rad(a) is a radical ideal, then again by the Nullstellensatz
I(V(a)) =rad(a) = a.

So I and V are inverse bijections between the set of Zariski closed sets in K™
and radical ideals of K[X]. O
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We next show discuss some properties of the Zariski topology.

Proposition 8.6. Let Z be a Zariski closed subset of K™ considered with the
induced Zariski topology.

1. Points in Z are closed.
2. Any open cover of Z has a finite subcover.

Proof. To see 1., note that for any Z = (z1,...,2,) € X we have that the ideal
generated by the monomials X7 — z1,..., X, — z, just consists of the point z.
For 2. we assume that

0= ﬂV(aﬁzV(Zai).

icl el

By the Nullstellensatz we have that

K[X] =rad (Z a¢>

icl

and so 1 = 1" € } ., a;. Hence there is a finite sum f; 4 ... + f, = 1 with
fj € a;;. This shows that 37, a;; = K[X] and so

n

0=]V(ai,)

j=1
O

Definition 8.7. A topological space Z is called noetherian if any family of
closed sets contains a minimal one or equivalently if any family of open sets
contains a maximal one.

Furthermore, note that another equivalent condition for a noetherian topolog-
ical space is the following: Any descending chain of closed subsets Z; C Z5 C ...
becomes stationary. In fact, as K[X] is noetherian, we have that K™ with the
Zariski topology is noetherian. As any closed subset of a noetherian topological
space is again noetherian with respect to the induced topology, we have that any
Zariski closed subset Z of K™ is noetherian with respect to the induced Zariski
topology.

Definition 8.8. A topological space Z is called reducible if it is the union of
two proper closed subsets. Otherwise Z is called irreducible. A subset A C Z is
irreducible if it is irreducible with respect to the induced topology.

Proposition 8.9. Let Z be a noetherian topological space. Then Z has finitely
many maximal irreducible subsets. These are closed and cover Z.

Proof. See Page 3 of [Spr9§]. O

Proposition 8.10. A Zariski closed subset Z of K™ is irreducible if and only
if 1(Z) is a prime ideal.
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Proof. Assume that Z is irreducible and let f,g € K[X]| with fg € I(Z). As
K[X] is an integral domain

Z=ZnV({(N)U(ZnV(g))

and so by irreducibility Z C V((f)) or Z C V((g)) or equivalently f € I(Z) or
gel(2).

For the converse assume that I(Z) is a prime ideal and that Z = V(a)UV (b) =
V(anb). If Z # V(a), then there is f € a such that f ¢ I(Z). Since fg € 1(Z)
for all g € b it follows that b C I(X) and so X = V(b). Thus X is irreducible. O

Definition 8.11. Let A be an algebra over K. Then A is called affine if it
is of finite type, i.e. there are finitely many elements f1,..., f,, € A such that
A=K][f1,..., fn], and A is reduced, i.e. 0 is the only nilpotent element of A.

For a Zariski closed subset Z C K™ we define the affine algebra of Z or the
coordinate ring of Z as
K[Z] = K[X]/1(Z).

The ring K[Z] is an affine k-algebra as K[X] is noetherian and I(Z) is a radical
ideal. Note that K[Z] is an integral domain if and only if Z is irreducible.

We now describe how to associate to each affine K-algebra A a Zariski
closed subset of K™ for some n. Namely choose generators fi,..., f, € A and
consider the ideal a = (fy,..., fn). By sending the variable X; to f; we get an
isomorphism

A K[Xl,...,Xn]/CL

Furthermore a is radical as A is reduced. Thus a = I(Z) for a unique Zariski
closed subset Z C K".

Proposition 8.12. The map
Z — Specmax(K|[Z]), zm, =1z({z})
18 bijective.

Proof. Note that the maximal ideals if K[Z] are the maximal ones of K[Z]
that contain I(Z). Thus the map is well defined. Note that Iz ({z}) = (X1 —
z1)y-., (Xn — 2zn)) + I(Z) and so the map is injective. To see that the map
is surjective, note that the maximal ideals of K[X] are precisely of the form
(X1 —21),...,(Xp — 2p)) for some element z = (z1,...,2,) € K™ O

Proposition 8.13. The map
Specmax(K[Z]) - Homg (K[Z], K), m, =Iz({z}) = (X; = 2),

where Homg (K [Z], K) is the set of K-algebra homomorphisms from K[Z] to K,
s a bijection.

Proof. This follows with the last proposition and the fact that a K-algebra
homomorphism from K[Xy,...,X,] to K is completely determined by the image
of the elements X;. O
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Definition 8.14. Let Z be a Zariski closed subset and a be an ideal in K[Z].
Then the vanishing locus of a relative to Z is defined as

Vz(a)={z€ Z : f(2) =0 for all f € a}.
Furthermore, we define for Y C Z a subset
I;YV)={feK[Z] : flyy=0forallyeY}.

Corollary 8.15. The Zariski closure of any setY C Z is Vz(Iz(Y)). Moreover,
the map Iz is a bijection between Zariski closed subsets in Z and radical ideals
of K[Z] with inverse V.

Proof. Analogously to the Nullstellensatz have that Ix(Vx(a)) = rad(a). The
rest of the statement follows analogously to Corollary O

If f € K[Z] denote the Zariski open set
Dz(f) = D(f) ={z € X : f(z) #0}.

These sets are called the principle open sets and they form a basis of the Zariski
topology. Moreover for any
f.9 € K[Z]

we have
D(fg) = D(f)nD(g), and D(f")=D(f)

for n > 1.

8.2 Affine Algebraic Varieties

Throughout this section denote by K an algebraically closed field, by Z C K™ a
Zariski closed subset and by K[Z] its coordinate ring.

Definition 8.16. A K-valued function f defined in a neighborhood U of z is
called regular at z if there are g,h € K[Z] and an open neighborhood V' C
U N D(h) of z such that

forye V.
A K-valued function f on U is called regular if it is regular at all its points.
We denote by
Oz(U) or O(U)

the K-algebra of regular functions on U.

We note that Oz defines a sheaf on Z, sometimes called the structure sheaf
on Z. More precisely, if V' C U are non-empty open subset, then restriction
yields a k-algebra homomorphism

Furthermore if U = (J,,c 4 Ua is an open covering and we are given a collection of
regular functions f, € Oz(U,) that are compatible on the intersections U, NUg,
then the functions f, uniquely glue to a function f € Oz(U) that satisfies
flu, = fa. This all makes (Z,Oyz) into a ringed space, meaning a topological
space Z together with a sheaf of functions O.
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Definition 8.17. An affine algebraic variety (Z,Oyz) is a Zariski closed set Z
in K™ with the above describes sheaf of functions Oz. We usually drop the Oy
and just refer to an affine algebraic variety Z.

For an affine algebraic variety (Z, Oz) we note that any function f € K[Z]
is regular. Thus we have an injective algebra homomorphism

¢:K[Z] = 0z(2), [ [
Theorem 8.18. The homomorphism ¢ is an algebra isomorphism.
Proof. See [Spr98] Page 8. O

Let (Z1,0z,) and (Z2,Oz,) be two locally ringed spaces. For a continuous
map ¢ : Z1 — Z, and any open subset V' C Z; we can map any element
f €04 (V) to

o*f=foo,

which is a function defined on ¢~ 'V.

Definition 8.19. Let (Z1,0z,) and (Z3,0z,) be two locally ringed spaces.
A morphism of locally ringed spaces from (Z1,0z,) to (Z2,Oz,) consists of a
continuous function ¢ : Z; — Zs such that for all V' C Zs we have a well defined
algebra homomorphism

¢*:07,(V) = Oz, (¢7'V), [ ¢"f=Ffoo.

Definition 8.20. Let (Z1,0z,) and (Z2,Oz,) be two affine algebraic varieties.
A morphism of affine algebraic varieties ¢ from (Z1,0z,) to (Z2,0z,) is a
morphism of locally ringed spaces (Z1,O0z,) to (Z2,0z,).

We will now discuss the above definition more concretely. Consider two affine
algebraic varieties Z; = V(a) C K™ and Zy = V(b) C K™ with two radical
ideals a and b and let ¢ : Z; — Z5 be a morphism of affine algebraic varieties.
Thus we have an algebra homomorphism

¢* : 022(22) — Ozl (Zl)
By Theorem we get an induced algebra homomorphism
¢" : K[Zs) = K[Xy,...,Xn]/b = K[Z1] = K[X1,...,Xm]/a,

where again ¢* f — f o ¢. Denote by 1; the image of X; + b in K[Z;]. We note
that then ¢ is given by

b Z1 — Zs, x = (U1(x), ..., 0 (x)).

Summarizing all this, we see that a morphism of affine algebraic varieties is given
by a well defined map

(b:Zl—>ZQ, xH(wl(x),,wm(m))

with ’l/)l, e ,d)m S K[Zl]
We next want to discuss the product of two affine algebraic varieties Z; and
Zo over K. It turns that it is suitable to define the product in a categorical
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way. Namely, we characterize the product of X and Y up to isomorphism by
the following universal property: The product of Z; and Zs is a triple (W, p, q)
consisting of an affine algebraic variety W over K together with two morphisms
p: W — Zy and p : W — Z5 such that for any triple (W’,p’,¢’) of an affine
variety W' together with morphisms p’ : W/ — Z1,¢' : W' — Z, there exists a
unique morphism 7 : W’ — W such that p’ = por and ¢ = gor. As a diagram
this looks as follows:

Theorem 8.21. The product of two affine algebraic varieties Zy and Zy over
K exists and is unique up to isomorphism. The coordinate ring is furthermore
isomorphic to K[Z1] @k K|[Zs], which is again a reduced affine algebra over K.

Proof. See [Spr98] Page 10. O

We usually denote the product by Z; x Z5 or Z; X g Z5 to make clear that
the varieties are over K.

Proposition 8.22. Let Z1 and Zs be affine algebraic varieties over K. Then
the product variety Zy X Zs is in bijection with the product of the sets Z, and
Zs.

Proof. Recall that by the universal property of tensor products we have a
bijection

HOHlK(K[Zl] RK K[ZQ],K) = HOmK(K[Zl],K) X HOIHK(K[ZQ],K).

This implies the statement of the proposition as by and we have for
any affine variety Z a bijection between Z itself and Homg (K[Z], K). O

8.3 Prevarieties and Varieties

Let K be an algebraically closed field. We define in the following the notion of a
variety which is the analogue of a manifold in the setting of algebraic geometry.
We first discuss prevarieties.

Definition 8.23. A prevariety over K is a quasi-compact ringed space (X, Ox)
such that any point of X has an open neighborhood U with the property that
the ringed subspace (U, Ox|y) is isomorphic to an affine K-variety. A morphism
of prevarieties is a morphism of ring spaces.

A subprevaritey of a prevaritey is a ringed subspace which is isomorphic to a
prevariety.

We again define the product of a prevariety in the catergorical manner as in
the affine case.
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Proposition 8.24. The product of two prevarieties exists and is unique up to
unique tsomorphism.

Proof. See [Spr98] Page 11. O

Let X be a prevariety and denote by
Ax ={(z,z) rze X} C X xX.
We are now ready to define the notion of an algebraic variety.

Definition 8.25. Let X be a prevariety. We call X a variety if
Ax CXxX

is closed. We define a morphism of varieties as a morphism of prevarieties.

Note that a topological space X is Hausdorff if and only if the diagonal A x
is closed in X x X in the product topology. Thus, a variety is more precisely
the analogue of a Hausdorff manifold.

Proposition 8.26. We have the following properties:
1. An affine algebraic variety is a variety.
2. The product of two varieties is a variety.
3. A subprevaritey of a variety is a variety.
Proof. The proof is omitted as the statement is not needed later. O

It is thus sensible to call a subprevaritey of a variety a subvariety.

8.4 F-structures and affine F-varieties

Throughout this section denote by F' a subfield of K, where K is algebraically
closed. If Z is a Zariski closed subset of K™, then we say that F' is a field of
definition of Z. If so we set

F[Z] = F[Xy,..., X,]/(I(Z) N F[X1,..., X,)).

The inclusion
F[Xy,..., X, — K[X1,...,X,]

induced an isomorphism
K®pr F[X1,..., X, = K[X1,..., X,
which descends to an isomorphism
K ®p F[Z) —» K|[Z].

So F[X1,...,X,] is an example of an F-structure.
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Definition 8.27. Let A = K[Z] be an affine algebra. An F-structure on Z is
an F-subalgebra Ay of A which is of finite type over F' and which is such that
the homomorphism induced by multiplication

K@FAO—>K[Z]

is an isomorphism. The surjectivity means that Ay spans V over K and the
injectivity translates to the property that elements of Ay which are linearly
independent over F' are also linearly independent over K. We then denote
Ayg = F[Z].

Definition 8.28. Let Ay = F[Z] be an F-structure on Z. Then the set
Z(F) := {F-homomorphisms F[Z] — F}
is called the set of F'-rational points.
The next proposition shows that we can view Z(F') as Z N F™.
Proposition 8.29. The map
ZNF" — Z(F), 2 (X = 2)
18 a bijection.
Proof. This proved as Proposition and O

We next discuss what is means for a closed subset Y of Z to be closed relative
to our F-structure.

Definition 8.30. A F-vector subspace W of K[Z] is called defined over F if
the K-span of WN F[Z] is W.

Definition 8.31. A closed subset Y of Z is F'-closed if the ideal I (Y) is defined
over F. A subset is F'-open if its complement is F-closed. The F-open sets define
a topology as we prove in the next proposition. This is the so called F'-topology.

Proposition 8.32. The F-open sets define a topology on Z. A basis for the
F-topology is given by the principal open sets D(f) for f € F[Z].

Proof. Tt is clear that Z is F-closed and to see that (} is F-open note that
I7(0) = K[X] which is spanned by F[X] over K. Next let Y; = V(a;) for i € I
be a collection of Zariski closed sets with a; radical ideals in K[X]. Then we
have by the Nullstellensatz that

() =1 (v = (v () ) < (o)

One checks that Rad (3,.; a;) is defined over F and so [
set. Furthermore

()

ser Yi defines a F-closed

(Gw) o)

ﬁ Cli> = ﬁ Rad(ai) = ﬁ a;.

i=1 i=1 i=1

Il
NG

Rad

7 N
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and as [);_, a; is clearly defined over F we conclude that |J;'_, ¥; is F-open. So
the F-open sets define a topology.

If f € F|Z] then we have that the coordinate ring of the complement of D(f)
is isomorphic to K[Z]/Iz((f)) and so the complement of D(f) is F-closed and
this D(f) is F-open. Let Y be an F-closed set. Then we have that Iz(Y) is
defined over F'. The rest of the proof is left to the reader. O

Definition 8.33. Let A and B be affine K-algebras with F-structures Ag and
By and let L : A — B be a K-linear map. We say that L is defined over F if

L(Ap) C By.
We next define how to define a F-structure on affine varieties.

Definition 8.34. Let (Z,Oz) be an affine variety. An F-structure on the affine
variety Z is given by the following data:

1. An F-structure on Z.

2. For each F-open subset U of Z we are given an F-subalgebra Ox (U)(F)
of Oz(U) such that the homomorphism induced by multiplication

K®r Oz(U)(F) = Ox(U)

is an isomorphism and these isomorphisms are compatible with the sheaf
structure on O.

An affine variety over K with an F-structure will be called an affine F-variety

We note that one can also proof in this setting that
F[X] = 0z(Z)(F).
For more details see [Spr98|] Page 9.

Definition 8.35. Let (Z,Oz) and (W, Ow ) be affine varieties. A morphism of
affine varieties a : Z — W is said to be defined over F is a is continuous with
respect to the F-topologies and if U C Z and V C X are F-open such that
a(V) C U then the induced map

Oy(U) — Ox(U)
is defined over F'.

Theorem 8.36. There is an contravariant equivalence of categories between
affine varieties over K with F-structures and homomorphisms of K-algebras
with k-structures.

Proof. See [Bor69] Chapter AG and especially subsection 11. O
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8.5 Projective Variety
8.6 Complete Varieties

8.7 Smooth Points

Let K be an algebraically closed field and let Z be an irreducible affine variety
of dimension k over K.

Definition 8.37. For a point x € Z we define the tangent space at x as

d
T,7 =< (ug,...,uq) € K : Zujé‘zjf(x) =0forall felI(Z)

j=1

We say that the point € Z is smooth if the tangent space is k-dimensional and
we furthermore call Z smooth if all of its points are smooth.

We next state some properties about smooth points without proof.

Proposition 8.38. If K is algebraically closed, then the set of smooth points
of Z is nonempty and Zariski open.

Proof. See [EW] section 3.4. O

Proposition 8.39. Let Z C C? be a k-dimensional connected variety defined
over R. Let x € Z(R) be a smooth point. Then there exists an analytic function
defined on an open subset in R which is a homeomorphism to a neighborhood
of x € Z(R). The same holds over C or over Q.

Proof. See [EW] section 3.4. O

8.8 Dimension
Recall that the following terminology.

Definition 8.40. Let (L, K) be a field extension. A transcendence basis of L over
K is a subset A C L such that A is a maximal algebraically independent subset.
The transcendence basis of L over K is the cardinality of any transcendence
basis.

We next define the dimension of an affine variety.

Definition 8.41. Let Z be an irreducible affine variety with coordinate ring
K|[Z]. Note that K[Z] is an integral domain and thus has a quotient field K (Z).
The dimension of Z, denoted dim Z, is the transcendence degree of K(Z) over
K.

If Z is a reducible affine variety with Z = |J;, Z; its irreducible components,
we then define the dimension of Z as

dim Z = maxdim Z;.

Proposition 8.42. Let Z be an irreducible affine variety and let Y be a proper
wrreducible closed subvariety. Then

dimY < dim X.
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Proof. Let A= K|[Z] = K|[z1,...,2,] and note K[Y] = A/P, where P is a non-
zero prime ideal of K[Z]. Let y; be the image of z; in K[Y]. Write d = dim X
and e = dimY. We may assume that y1,...,y. are algebraically independent
and so also x1, ...,z are algebraically independent. So e < d.

Assume for a contradiction that e = d. Let then f be a non-zero element of
P. Then as d = e we have a polynomial H € K[Ty,...,T.] such that

H(fvzla"'aZ€) =0.
We thus have

H(an17"'ay5) = 0.
This is a contradiction. Thus d < e. O

Proposition 8.43. Let X and Y be irreducible affine varieties. Then
dimX XY =dim X +dimY.

Proof. This follows from the observation that is z1,...,x4 and yi,...,¥y. are
maximal sets of algebraically independent elements in K[X] respectively K[X]
then

{t1®1,...,24®1,1Qy1,...,1 @Y.}

is such a set in K[X]® K[Y] = K[X xY]. O

Proposition 8.44. Let f € K[T1,...,T,] be an irreducible polynomial. Then
the affine variety

Z=V({/)

is an (n — 1)-dimensional irreducible subvariety of K™.

Proof. The coordinate ring of Z is K[T4,...,T,]/(f). O
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9 Linear Algebraic Groups

9.1 Definitions and Examples

Definition 9.1. A algebraic variety G which is also a group is called an algebraic
group if the maps
p:GxG— G, (z,y) — xy,

where we view the set of points in G x G by as a product set, and i : G —
G, g — ¢! are morphisms of algebraic varieties.

We say that G is a affine or linear algebraic group if the underlying variety
of GG is affine.

We next discuss three important examples, where we denote by K always an
algebraically closed field.

Example 9.2. Consider G = K with addition as group operation. Then we
have the induced homomorphisms

m* : K|G] = K[X] = K[G] ok K[G] 2 K[X,Y], Xe—X+Y

and
i*: K[G] = K[X] — K[G] = K[X], X—=-X

are indeed algebra homomorphisms and so G is indeed a linear algebraic group.

Definition 9.3. Let G and G’ be algebraic groups. A homomorphism of
algebraic groups ¢ : G — G’ is a group homomorphism that is also a morphism
of varieties.

9.2 Basic Properties

In this subsection we list some basic properties of algebraic groups. Throughout
this section we denote by G an algebraic group over K an algebraically closed
field.

Proposition 9.4. Let g € G. Then the maps
Ly:G— G, T gx

and
R, :G =G, T —xg

are isomorphisms of varieties.

Proof. By definition Ly, and R, are morphisms of varieties with inverse L -1
and ;-1 and hence they are isomorphisms. O

Proposition 9.5. There is a unique irreducible component G° of G that contains
the identity element. G° is a closed connected normal subgroup of finite index.
Furthermore G° contains any closed subgroup of G of finite index.
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Proof. Let X and Y be irreducible components of G containing e. Then as
multiplication is in particular continuous we conclude that XY and its closure XY
are irreducible. Since X and Y are contained in XY we conclude X =Y = XY
Since i is a homeomorphism, we see that X! is an irreducible component
of G containing e and so must be equal to X. So X is a closed subgroup.
As conjugation defines a homeomorphism we have that Xz~ ! = X, so that
X is a normal subgroup. The cosets £X must be the components of G and
as a noetherian topological space has only finitely many maximal irreducible
subspaces the number of cosets and hence the index of X must be finite. As an
irreducible subspace is also connected, we conclude that X is connected.

Finally let H be a closed subgroup of G of finite index. Then H? is a closed
subgroup of finite index of G°. As the index of H? is finite, we can find a finite
sets S of elements in G° such that

G’ = |_| sHY.

seS

By the last proposition we have that left multiplication is a homeomorphism.
Thus each of the sets s HY is closed and since we take a finite union, we conclude
that the complement of H? is closed and hence H? is open. Since by the first
step we have that G is connected we conclude that H° = G°. O

Corollary 9.6. An algebraic group is connected whenever it is irreducible.

Proof. If G is irreducible, then it coincides with its unique irreducible component
that contains e € G. Thus G is connected by the last proposition. Conversely, if
G is connected, then it has only one irreducible component as any irreducible
component is connected. O

Lemma 9.7. Let U and V be dense open subsets of G. Then UV = G.

Proof. Let x € G. Then zV~! and U are both open dense subsets. In the
irreducible component of the identity we have that £V ~! and U are non-empty
open subsets and hence have a nonempty intersection. So x € UV. O

Lemma 9.8. The closure of any subgroup is again a subgroup.

Proof. Let H be a subgroup of G. Let x € H. Then H = xH C xH. Since xH
is closed we have H C #H and x~'H C H. So HH C H. This argument can be
extended for any x € H. Lastly since (H)~! = H-1 = H we have proved that
H is a subgroup. O

Proposition 9.9. Let ¢ : G — G’ be homomorphism of algebraic groups. Then
ker(¢) is a closed normal subgroup of G and ¢(G) is a closed subgroup of G'.

Proof. As ker(¢) = ¢~1(e) the first statement follows. It is clear that ¢(G) is a
subgroups and to see that it is closed we note that

¢(G) = ¢(G) = ¢(G).
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9.3 Group Actions and Representations

Let G be a algebraic group over K an algebraically closed field. We introduce
several important notions and then use them to prove that any linear algebraic
group is isomorphic to a closed subgroup of GL,,.

Definition 9.10. We say that G acts as an algebraic group on a variety X if
there is a morphism of varieties

a:GxX =X, (g,2) — a(g,z) = g.x
such that for any g,h € G and x € X we have
g.(h.x) =(gh).x and ex=uz.

The space X is called a homogeneous space if G acts transitively.
The orbit of x € X is the set

Gx={gx:geG}
and the stabilizer of x, also called the isotropy group of x ths the closed subgroup
Gy, ={9€G: gx=uz}

Definition 9.11. Let V be a finite dimensional vector space over K. A rational
representation of G in V is a homomorphism of algebraic groups

r: G — GL(V).

We furthermore say that the rational representation r : G — GL(V) of G is
defined over a subfield F' C K, if the homomorphism r is defined over F.

With the help of the notion of a rational representations we aim at proving
the following theorem.

Theorem 9.12. Any linear algebraic group G is isomorphic to a closed subgroup
of GL,,.

To prove the theorem we need to investigate the reqular left and regular right
representation

A:G = GL(K[G)]), g~ Ay),
p:G— GL(K[G]), g~ p(g),

where A(g) and p(g) is defined for f € K[G] as
M@ H@) = flg™ ). (plg)))(x) = f(zg).

Note that we view here the affine algebra K[G] as the ring of regular functions
on G. In order to study these representations we consider the more general
setting of a linear algebraic group G acting a : G x X — X on an affine variety
X. So a is given by an algebra homomorphism

a*: K[X] — K[G x X]| = K[G] ® K[X].
Furthermore the action of G on X induces a group representation
s:G — GL(K[X]), g+ s(g),
where s(g) is defined for f € GL(K[X]) as
s(9)f)(x) = flg~".x).
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Proposition 9.13. In the above setting, let V' be a finite dimensional subspace
of K|X]. Then there is a finite dimensional subspace W of K[X| which contains
V and is stable under all s(g) for g € G. Then V is stable under all s(g) if and
only if a*V C K[G] @ V. If this is so, the group representation defines a rational
representation of G.

Proof. 1t suffices to prove the first statement for V = K f a one dimensional
subspace. Note that we can write

af=> wef
=1

with uy,...,u, € K[G] and f1,..., f, € K[X]. Then we have that
(s()f)@) = flg~ a) =D uilg™")fi(x).
i=1

So we see that all s(g)f lie in the subspace W’ of K[X] generated by the f;.
The subspace W of W’ spanned by the s(g)f then has the wished properties.
Exactly this argument also shows that if a*V C K[G] x V then the space V/
is stable under all s(g). Conversely if V' is stable for all s(g), then choose a basis
(fi) of V and extend it to a basis (f;) U (g;) of K[X]. Let f € V. Then write

a*f:Zuz Xfl'+Z’Uj ng

where u;,v; € K[G]. Then we have that

s(o)f =D uilg™) i+ D vi(g)g;-

By assumption we have that v;(g~*) = 0 for all g, hence all v; vanish. This
implies the second statement. O

We are now ready to prove Theorem [9.12

Proof. (of Theorem Write K[G] = K|f1,..., fn] and denote by V the
vector space generated by all the f;. By the proof of the last proposition we
see that V is p(g) stable for any g € G. Furthermore there exists elements
(mij)lgi)jgn in K[G] with

p(9)fi = Zmij(g)fj-

We claim next that the map

¢:G— GLy, g+ (mij(9)i<ij<n
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defines a group homomorphism. To see this note that as p is a representation

p(g192) fi = p(g1)p(g2) fi

Z mij(g)fj
j=1

Jj=1
n
= 2_mislg Zmak
Jj=1
n
= § ml] mjk fk
k=1

So we see that

mix(9192) E mij(g)mjx(g

which shows precisely that ¢ is a group homomorphism. Furthermore, ¢ is a
morphism of affine algebraic varieties. Thus ¢(G) is a closed subgroup by
Proposition We next show that ¢ is injective. For this assume that
¢(g) = e € GL,,. Then p(g)f; = fi; and so p(g9)f = f. As p(g) is a faithful
representation we conclude g = e. The corresponding algebra homomorphism
¢* : K[GL,| = K[T;;, D~ 1 — K[G]

is given by ¢*T;; = m;j,¢* (D7) = det(mij)fl. As fi(g) = >2;mji(g) fi(e) it
follows that ¢* is surjective. So K[G] is isomorphic to K[GL,]/ker(¢*). Thus

¢ defines an isomorphism of algebraic groups from G to the closed subgroup
o(G). O

Corollary 9.14. Any linear algebraic groups is isomorphic to a closed subgroup

of SL,.

Proof. To see this consider the well-defined map

. g 0
¢ : GL,, — SL,, gl—>(0 det(g)_1>.

It is clear that ¢ is an injective group homomorphism and a morphism of affine
algebraic varieties. It is also straightforward to see that K-algebra homomorphism

¢ : K[SL,] = K[GLy)]

is surjective and hence indeed ¢ is isomorphism of algebraic groups from ¢ to
the closed subgroup ¢(GL,,) of SL,,41. The statement follows from composing
the homomorphism from the proof Theorem with ¢. O
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9.4 Jordan Decomposition

We begin with the following definitions. As always we denote by K an alge-
braically closed field.

Definition 9.15. Let V be a vector space over K. An endomorphism a of
V is called semi-simple of diagonalizable if there is a basis of V' consisting of
eigenvectors of a. We call a nilpotent if a® = 0 for some integers s > 1. Lastly,
we say that a is unipotent if a — 1 is nilpotent.

We aim first at proving the following proposition.

Proposition 9.16. (Additive Jordan Decomposition) Let a € End(V'). Then we
can decompose the endomorphism a uniquely into commuting elements a = as+ay,
where as € End(V) is diagonalizable and a, € End(V) is nilpotent. Moreover,
there are polynomials P,Q € K[T| without constant terms such that as = P(a)

and a, = Q(a).
We start with two Lemmas.

Lemma 9.17. Let S C M,, be a set of pairwise commuting matrices. Then
there exists x € GL,, such that xSx~1 consists of upper triangular matrices. If
moreover all S are diagonalizable then they are simultaneously diagonalizable,
i.e. there is some x € GL,, such that xSx~' consists of diagonal matrices.

Proof. For the first claim, we proceed by induction on n. If n = 1, the assertion
is clear. For the inductive step we may assume that not all elements of S are
multiples of the identity, since then the statement is again trivial. If so, there is
some s € S with an eigenspace that is a non-trivial subspace W of K", since
otherwise s was a multiple of the identity. As all the matrices of S commute, we
conclude that W is S-stable. By the inductive assumption, we may assume that
the statement holds for the endomorphisms induced by S on W and on V/W.
This implies the statement.

The second assertion is proved analogously writing V' as a direct sum of
eigenspaces of s. O

Lemma 9.18. The product of two commuting semi-simple (nilpotent, unipotent)
endomorphisms of V' is again semi-simple (nilpotent, unipotent).

Proof. This follows from the last Lemma in the semi-simple case. The unipotent
and nilpotent cases are clear. O]

Proof. (of Proposition [9.16)) Write the characteristic polynomial as
det(T-1—a)= H(T —a;)™

be the characteristic polynomial of a, the a; being the distinct eigenvalues of a.

Denote
Vi={z eV : (a—a;)"z =0}

We claim that V; is a-stable. To see this, note that if € V; then we have that

(a —a;)"ax =ala —a;)nx =0
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and hence V is a-stable. By the Chinese Remainder Theorem there exists
P € KIT] such that
P(T)=0 modT

and
P(T)=a; mod (T —a;)™

for all 4.

Set a; = P(a). Since P(a;) = a; the eigenvalues of as are the same as those
of a and ag furthermore stabilizes the spaces V;. Thus the V; are the eigenspaces
of as and V is their direct sum. Thus a, is diagonalizable and a — a, is nilpotent.
It remains to show uniqueness. To see this assume a = bs + b, be a second
decomposition as in the claim. Then we have that as — bs = b, — a,, are both
diagonalizable and nilpotent and hence equal to zero. O

Corollary 9.19. (Multiplicative Jordan Decomposition) Let a € GL(V) then
we have a unique decomposition

4 = G50y = QqGs,
where ag is diagonalizable and a,, is unipotent.

Proof. Let a = as + a,, be the additive Jordan decomposition. As a is invertible,
we note that 0 is not an eigenvalue of a. Thus from the prove of the last
proposition we see that as is invertible. Hence a,, = 1 + a3 'a, has the required
properties. Uniqueness follows analogously to the last proposition. O

We call a linear algebraic group unipotent

9.5 Commutative Algebraic Groups

Theorem 9.20. Let G be a commutative linear algebraic group. Then the sets
Gs and G, of semi-simple and unipotent elements are closed subgroups and the
product map

T:Gyx Gy, — G
s an isomorphism of algebraic groups.

Proof. We assume without loss of generality that G is a closed subgroup of GL,,
for some n. By Lemma [9.18| we conclude that G5 and G, are closed subgroups.
By applying Lemma [0.17] we can furthermore assume that G is upper triangular
and such that G4 = GND,. Thus Gy is closed. To see that G, is closed we
proceed analogously. The second assertion is clear. O

Definition 9.21. A linear algebraic group G is called diagonalizable if it is
isomorphic to a closed subgroup of D,, the group of diagonal matrices for some
n. We furthermore call G a torus if it is isomorphic to D,, for some n.



9. Linear Algebraic Groups 103

9.6 Linear Algebraic Groups defined over R
We start by the the following observation.

Lemma 9.22. Every point of a linear algebraic G group is smooth.

Proof. By Proposition [8.38 we see that the set of smooth points is non-empty. So
let g € G be a smooth point. Then e = g~ !¢ is a smooth point of g7'G = G and
so e is smooth point. This argument shows that any point in a linear algebraic
group is smooth. O

This establishes the following useful corollary.

Corollary 9.23. Let G be a linear algebraic group defined over R. Then G is a
Lie group over C and G(R) is a Lie group over R.

Proof. By the last lemma we have that every point of G is smooth and Proposi-
tion provides G with a chart at every point. This manifold structure on
G is compatible with the group structure as the group operation is given by
a morphism of algebraic varieties and thus given by polynomials and hence is
smooth. O

Proposition 9.24. Let G C SLy be a linear algebra group defined over R with
Lie algebra g. Then
g Nsli(R)

is the Lie algebra of G(R).
Proof. See section 3.4 of [EW]. O
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10 Compact Orbits and Orders

10.1 Closed Orbits for Rational Representations

We consider a rational representation r : SLy; — GL,, over Q and let v € Q™.
Then we consider the stabilizer

T = Stabgy,, (v) = {g € SLq : 7(g9)v =v}.

The aim of this subsection is to prove the following proposition. As usual we
denote by T'(R) the R-points of T

Proposition 10.1. The orbit of the R-points of T
SLd(Z)T(R) C X4
is closed.

Proof. We consider a sequence k,, € T(R) and
SL4(Z)k,, — SLa(Z)k

where k& € SLi(R). We want to show that k¥ € SLy4(Z)T(R). The above
convergence translates to the existence of elements 7, € SL4(Z) and &, € SL4(R)
such that
’Ynkn =enk
with En — Id.
We note that as a the rational representation r : SLy — GL,, is defined over
Q, it is given by polynomials over Q. Hence we there is some N € N such that

r(y) € %Matn(Z)

for all v € SL4(Z). Furthermore, we denote by M the common denominator of

the entries of v and so we have that

1
—_zn
r)v € 3y

for all v € SL4(Z).
As
r(Yn)v = r(mkn)v = r(enk)v — r(k)v

we have that the sequence (7, )v stabilizes for large n and hence r(v,)v = r(k)v
for all n large enough. Thus v, 'k € SL4(Z)T(R). O
10.2 Compact Orbits and Dirichlet’s Unit Theorem

Throughout this section we consider an element ¢ € R that is integral over Z
and we consider the number field

K =Q(¢) = Q[T1/(fe),

where f¢ is the minimal polynomial of ¢. Note that fc € Z[T] as ( is integral over
Z. Denote d = [K : Q] and recall that then f is of degree d. So f¢ has n zeros over
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C, where we write (1,...,(, for the real roots of fr and (ry1, Grg1s - - Crts) Grs
the complex roots of f¢, which appear in pairs. Then we have that d = r 4 2s
and

fC(T) = (T_Cl)(T_CT)(T_ Cr+1)(T_<T7+1)"'(T_ CrJrs(T_CTist)'

Any embedding ¢ : Q(¢) — C is thus of the from ¢(f(T)) — f(¢;). By
Proposition the set of embeddings ¢ : Q({) — C has the cardinality d and
thus the zeros of f: are all distinct.

We denote by Ok the ring of integers in K and we recall that an order a
subring O of Ok with an integral basis of length n. The aim of this subsection
is to prove Dirichlet’s Unit Theorem for number fields of the above form.

Theorem 10.2. (Dirichlet’s Unit Theorem) The unit group O* of an order O
is the direct product of the group pu(K) of roots of unity which are contained in
K and a free abelian group of rank r + s — 1.

The theorem will follows rather easily from the compactness of the orbit of
certain subgroups in X,. In order to consider a slightly more general setting we
define the following notion: A proper O-ideal is an ideal a C O which contains
and integral basis of O of length n such that

O={be K : baCa}.

Note that a = O is a proper O-ideal. So everything done below applies especially
to the case a = O.
For b € K consider the map from subsection 1.2

Ty: K — K, T bx

and recall that we defined the norm N(g.q)(b) = det(T}).

Let aq,...,aq be an integral basis for O that is contained in a. Proposi-
tion shows that ai,...,aq is also a basis for K over Q. Thus considering
K as a vector space over Q we can identify the Q-linear map T, with the
representation

¥(b) € Matq(Q)

with respect to the basis ay, ..., aq. More formally ¢ (b) is given as follows: Write
ba; = Z?Zl bija; for a;; € Q. Then 9 (b) is given by

b1 ba1 ... bp

bia bos ... bgo
P(b) =

big bog ... bgaq

We claim the associated map
¥ K — Maty(Q), b— (b)

is linear and satisfies ¥(ab) = v (a)y(b) for a,b € K. To see the last claim,
note that linearity is clear. To see ¥(ab) = ¥(a)¥(b) for a,b € K denote by
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Y(a) = (aij),(b) = (bi;) and 9(ab) = (¢;j). Then we have for alli=1,...,d

d d

g cija; = (ab)a; = a(ba;) = a E bk
j:l k=1

d d d d d
= E bikaak = E bzk E [ = E E bikakj Qaj.
k=1 k=1 j=1 j=1 \k=1
. . d .
Thus we conclude as ay,...aq is a basis ¢;; = > ;| biray;, which shows that

P(ab) = (a)i(b).

Lemma 10.3. An element b € K is contained in O if and only if 1(b) €
Matgy(Z). Furthermore b € O* if and only if

¥(b) € GL4(Z) = {g € Maty(Z) : det(g) = +1}.

Proof. If b € O, then by definition ba C a and hence by the definition of an
integral basis there are coefficients z;; € Z such that

n
bai: E Zijaj
j=1

and so ¥(b) € Maty(Z). The converse follows again as a1, ...aq is an integral

basis of a. For the second statement note that as ¥(1) = I; we conclude
P(b)Y(b1) = p(bb~1) = (1) = I4, showing that ¢(b~1) = +(b)~!. This implies
the second statement. O

Consider O! = {b € O* : 1(b) € SL4(Z)} and note that either O = O* or
it is an index two subgroup of O*. We furthermore consider for v € Maty(Q)
the rational representation

7 :SLg — GLg2, g+— (Maty > v+ gug™)
and as in the previous subsection we denote by T the stabilizer of v = ¥ (¢) so

T ={g €SLqg : 7(9)¥(C) = ¥({)}
={g€SLa : g¥(Q)g~" = v(O)}.

The main proposition necessary for this subsection will be the following.
Proposition 10.4. The orbit of the R-points of T
SLd(Z)T(R) C X4

is compact and the corresponding cocompact lattice T(Z) = SL4(Z)NT(R) < T(R)
satisfies

T(Z) = H(OY).
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Proof. We first show that T'(Z) = ¢)(O1). First note that as ¢)(ab) = 1(a)y)(b) for
a,b € K we have that the minimal polynomial of ¢(() is also f¢. Note that hence
the minimal polynomial of ¢(¢) has degree d and as the minimal polynomial
divides the characteristic polynomial, which is also a normed polynomial of
degree d, we conclude that f¢ is the characteristic polynomial of ¢(¢). As the
zeros of fe over C are all distinct, this implies that 1(¢) is diagonalizable over C.
This yields the existence of complex matrices D,U with D = Uy (¢)U~! such
that D is diagonal. Observe

{g € Matq : gvo(¢) = ¥(Q)g} = U{g’ € Maty : ¢'D = Dg'}U™"

and hence the space

{9 € Matq : g¥(C) = ¥(C)g}
has complex dimension d and moreover as ¢(() is a rational matrix we note that
{9 € Matq(Q) : g(¢) = ¥(Q)g}

has dimension d over Q. Finally, as 1 is linear and ¢ (K) C {g € Mat4(Q) :
g (¢) = ¥(¢)g} we conclude

P(K) = {g € Mata(Q) : gv(¢) =¥(¢)g}- (10.1)

This allows us to derive that

P(O) =¢({b e K : ¢(b) € SLq(Z)})
= SLq4(Z) N T(R) = T(Z).

We proceed by showing that the orbit SL;(Z)T'(R) is compact. We already
know by Proposition that SL4(Z)T(R) is closed so it suffices to show that
the orbit is bounded.

To see this, first note that

N(k.q)(b) = det(1(b))

and so N(x.q)(b) = 0 if and only if b = 0, as K is a field and hence T} is
invertible.
Furthermore denote

L: Q% - K, (v1,...,v4) = via; + ... + v4aq.

We claim that for any m = (m;)1<i<a € Z% and h = (hij)1<ij<a € Maty(Q)
which is of the form () for b € K that we have

t(mh) = t(m)b. (10.2)
To prove equation (|10.2)) note
Y mihi d
t(mh) =1 = Z mihija;

d ij=1
Zi:1 mihig
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and
d d
L(m)b = Zmiaib = Z mihijaj
i=1 i,j=1
showing equation (10.2]).
We finally consider the map 1 o ¢ : Q% — Maty(Q) denote by
T : RY — Maty(Q)

the R-extension of ¢ o . Note that by (10.1)) we have for any h € T(Q) b € K
such that 1 (b) = h. Thus we conclude for all m € Z with the help of equation

that
Y(mh) = ¢(e(mh)) = P(e(m)b) = ¢ (u(m))i(b) = ¥(m)h.

Thus this relation holds for any element h € T(R) by definition of W.

We now show that the orbit SL4(Z)T'(R) is bounded. For a contradiction
assume that is not the case and hence there is some m € Z%\{0} and h € T(R)
such that the vector mh is small enough such that

| det(T(mh))| < 1.
As h € SL4(R) we have by equation
| det(¥(m))| = | det(¥(m)h)| = | det(T(mh))| < 1.

This shows since det(¥(m)) € Z that «(m) = 0 and hence m = 0, a contradiction.
O

Proposition 10.5. With the notation as above
T(R) = M x RTTs~1,

where M is a compact linear group with connected component of the identity
isomorphic to (S*)*.

Proof. This follows mainly by the fact established in the proof of Proposition
[10.4] that

T(R) = {g € SLa(R) : g9 (¢) = ¥(¢)g}

and some consideration involving a generalization of the Jordan normal form,
which we omit here. For more details see [EW] section 3.3. O

We are now ready to prove Theorem [10.2}

Proof. (of Theorem [10.2) By Proposition and Proposition we see that
O' can be viewed as a uniform lattice in M x R"™*~1. Thus it follows that O*
is of the claimed form F x R"+5~! with F finite as M is compact. Next note
that any element of O! that is of finite order, must be a root of unity, implying
the claim. O
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10.3 Compact Orbits and Ideals

We denote again by
K =Q(¢) =QI[T/(fc)

a number field with ¢ € R integral over Z and f¢ the minimal polynomial of ¢.
Assume that K is of degree d and let r be the number of real embeddings and
2s be the number of complex embeddings such that r» 4+ 2s = d. We then call
the number field K of type (r, s)

Denote by ¢1, ..., ¢, the real embeddings and by ¢,41,...,¢r+s complex
embeddings, where we choose only one of ¢ and ¢ for ¢ any complex embedding.
We then call

QS:(¢17"'7¢7‘7¢7‘+17"'5¢7‘+S):K%Rr XCS%RT+25

the complete Galois embedding.
Furthermore, as in the previous section we denote by O an order of K and
by a C O a proper O-ideal. We start with the following observation.

Lemma 10.6. In the above setting,

ola) < RTH

s a lattice. Furthermore, for ai,...,a, an integral basis we have that
¢(a1)
vol(¢(a)) = det (10.3)
¢(aa)
Proof. To see this choose an integral basis aj,...,aq of a and we then claim
that ¢(a1),...,¢(aq) is linearly independent. In order to show this, note that
if ¢(a1),...,o(aq) was not linearly independent, then we could find non zero

elements b € a such that ¢(b) is arbitrarily small. As ¢ is injective and the map

Yop ! ¢(a) = Maty(Q)

is linear, we conclude that there is some b € a such that
INi(b)] = | det(¥ (b)) <1

and so b = 0 as b € a C O. This shows that ¢(a1),...,¢(aq) is linearly
independent and so

¢(a1)
ola)=2"|
$(aq)

is a lattice and follows. O

By replacing a; by —a;, we thus arrive by

1
Tq = W(ﬁ(ﬂ) € Xy
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at a unimodular lattice and by

1 ¢>(%11)

ga:ﬁ :
@

at a matrix with determinant 1.
Consider the map

¢t : C — Mato(R), z:x—i—z’y»—)(_xy z>

and the matrix

G

VR = Gr (Con) € Maty(R).

L(CT-&-S)

Furthermore denote by 7). s the centralizer of v¢ g, so

T,s={9€SLy : gucrg " =vcr}
We then deduce from Proposition [10.4] the next corollary.
Corollary 10.7. In the above setting, the orbit

zaTy s(R) C X4
18 compact.

Proof. We use the same notation for ¢(¢) and T" as in Proposition Assume
for the moment

Y(€)ga = gave,r (10.4)
Then
Trs=9q 1Tga
and this implies
SLd(Z)gaTr,s(R> = SLd(R>T(R)ga
is compact by Proposition
To see assume without loss of generality that vol(¢(a)) = 1 and choose

first e; a standard basis vector with 1 < ¢ < r. Then note that ¢;(¢) = ;. By
this we see

Pi(ar) ¢i(Car) Gigiar)
Y(¢)gaei = ¥(C) : — . _ :

oia))  \&iCa))  \Goulan)

and
Gidi(ar)
GaV¢ RE; = Gali€; = :
Citi(aa)

The case r < i < 2s is analogous and so is proved. O
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We next discuss the question, when two proper O-ideals a;, as give rise to
the same orbit. This question is answered by the next proposition.

Proposition 10.8. Two proper O-ideals a1, az have the same orbit under T, s(R)
in Xq if and only if they are ideals in the same number field and order, and are
equivalent, i.e. there is some a € K\{0} such that

o = ady.
Proof. Assume first a; = aas. Let a1, ..., aq be an integral basis of a;. Then we
have that aaq,...,aaq is an integral basis of a; = aa;. By the same argument

as for for -a instead of -¢ we see that
Gaz = V(a)ga, = GaVbR-
Hence, as vpr € Ty s(R), this shows
o € 1, s(R)

which shows that the orbits are the same.

Conversely assume that a; is a proper O;-ideal in a number field K; and
ag is a proper Oz-ideal in a number field Ko and denote by x4, and x4, be the
corresponding elements in X4 and assume that x4, = x4,t for some ¢t € T, ;(R).
Next note

O={beK :bay Ca}
= v € W(K))w : 20 C 2%)
= {v € Matg(R) : v)(¢) = ¥(¢)v and Z% c Z%}
= {v € Matg(R) : voer = verv and zq,v C Zq, }

via conjugation by g, and So we see that O =2 0" and K = K'. Now
suppose that ai,...,aq is a basis of a; so that x,, = Z%g, as before. Choosing
the basis af,...,a}; of as correctly gives x4, = Z%gq, and gs, = ga,t. Hence
¢i(a}) = ¢i(a;)ti, where t; (in R or C) is the ith entry of the block diagonal

matrix t € T} ;(R). So
a’;
t; = ¢ <J)
aj

is independent of j. Hence there exists some b € K with t; = ¢;(b) and so
as = baj.
O

Example 10.9. Let K = Q(\/g), for d a positive square-free integer. So K is
of type (2,0) and hence T\ ) is just the diagonal subgroup contained in SLy(R).

Let
d+d
2

a=0C OgZ

be an order. So there is some integral number x € Ok such that Q(z) = K and
1,z is an integral basis of Z[z] and hence

O=2z]|=7Z®2Z.
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Denote by ¢1, ¢2 : K — R the two real embeddings such that
1 ¢i(z)
1 gbg (ZC)
has positive determinant. Thus we have that
_ (1 ¢i(x)
$(0) =2 (1 ¢a(x)
is a lattice with
_ L ogu(z))) _
val(0(0) = det (5111 ) = 6ate) — an(a) > 0.

Thus we have the lattice

= o) T Vae e )
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11 The Borel-Harish-Chandra Theorem
11.1 Quantitive Non-Divergence for SLy(Z)\SLy(R)

The aim of this subsection is to prove the following theorem.

Theorem 11.1. Let x € X5 be a non-periodic point for the horocycle flow. Then
there is a constant ¢ > 0 and and T, > 0 such that for alle >0 and T > T, we
have that

S 0.T] : hex g X)) <=

We start with proving a special case, from which the theorem will follow
straightforwardly. The next Lemma does not need the assumption that z is a
non-periodic point.

Lemma 11.2. Let x =T'g € X5 be a non-periodic point for the horocycle flow
and assume that the lattice
I, =7Z%

corresponding to x does not contain any non-zero vector of norm strictly less
than 1. Then there is a constant ¢ > 0 such that for alle > 0 and T > 0 we have

%\{t Cl0.T] : bz ¢ Xo(e)}] < ce.

Proof. Let T' > 0 and note that for v = (v1,v2) € I';, we have

—t

1
vu_y = (v1,v2) (O 1 > = (v1,v9 — tvy).

For any € > 0 and v = (vy,v9) € T';\{0} we write

P:={t€[0,T] : |Jvu—tl2 < €}

={te[0,T] : \/m<5}~

We claim that for any vector v = (v, v2) outside the open ball Blf‘_l_l; (0) we have
that the P} is empty. To see this note first that if [v;| > 1, then P! is definitely

empty. So we assume that v; < 1. Then, as ||v||2 > T + 2, we conclude that
|ve| > T + 1. Hence we have for all ¢ € [0, T,

‘1}2 —t’U1| 2 |U2‘ —t|111| Z |U2| -T Z 1.

So
lvu—¢[|2 > 1.

As T', is a lattice, there are only finitely many vectors contained in Byuug (0)
and so by the last claim only finitely many elements v € I',,\{0} such that P}
is non-empty. We call a vector v € I';\{0} primitive if RoNT, = Zv. We
henceforth denote by

Viy---,Un
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the finitely many elements I',\{0}, which are primitive and for which P! is
non-empty. We furthermore assume that the vectors vq,...,v, are pairwise
linearly independent. In the following we write

As the lattice I'yu_; is unimodular, there can’t be two linearly independent
elements in I';u_, that are of norm less than 1. Thus the sets P; are all mutually
disjoint for all e < 1. So we conclude

{t€[0,T] : hy-x & Xo(e)} = PfU...UPE. (11.1)

Assume for the moment that we have proved the statement for ¢ < % and
have found a constant c that satisfies the claim for ¢ < 2. Then ¢’ = max{c, 2}
satisfies the claim for any . So we can assume for the rest of the proof ¢ < %

We claim that there is a constant ¢ > 0 such that
|P7| < ce| P} (11.2)

for all € < 2. Then with the help of (11.1]) and the obvious fact that |P}|+ ...+
|PY < T foralli=1,...,n we derive

S €0.T) : e g Xale)}] < (1PF|+ .+ |PED

IA

1
T(ce|P11| + ...+ cg|Pr))

ceT
ST

proving the lemma.

So it remains to prove (11.2). Write v; = (v}, v%) and note that we can
assume |v}] < % because otherwise Py is empty as ¢ < % For simplicity we drop
the sub- and superscripts. We furthermore assume without loss of generality
that v1,v9 > 0. With these assumptions we have

Pf={tc0,T] : vi+ (vy—tv)? <e?}
Cc{t€[0,T] : |ve —tn] < e}
Note that the equation
Vo — t?]l =+

has the solution t4 = % and hence we can bound

2
IPE| <t —t, = —. (11.3)
U1

Next we observe as |v1| <
Pl ={te€[0,T] : v?+ (vg —tv1)* < 1}
={te€[0,T] : |va — tvy| < /1 —v?}

S {tef0.T] : Joa —tur] < 4/3).
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Assume in the following that P; is not empty. As ¢ < % we have that

Pili){tER:vatle(\/g—%,\/;)}.

This shows that

\/3 1
P> Y2 (11.4)
U1
Setting
2
c=——
\/3 1
172
and combining (11.3]) and (11.4) we conclude
3_ 1
9 de (\ﬁ -3)
Pfl< = = ———" <celpi]
V1 (%1}
proving the claim and the lemma. O

Proof. (of Theorem [11.1)
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